TRANSIDAD B GLADALATA

UNIVERSIDAD DE GUADALAJARA

Centro Universitario de Ciencias Biológicas y Agropecuarias

Relaciones de incompatibilidad en razas e híbridos comerciales de maíz

Tesis

que para obtener el grado de

Doctor en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas

Presenta

José Miguel Padilla García

DIRECTOR

José de Jesús Sánchez González

TRABALA DO

UNIVERSIDAD DE GUADALAJARA

Centro Universitario de Ciencias Biológicas y Agropecuarias

Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas

"Relaciones de incompatibilidad en razas e híbridos comerciales de maíz"

Por

José Miguel Padilla García

Tesis presentada como requisito parcial para obtener el grado de:

Doctor en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas

Coordinador de la Orientación en Ciencias Agrícolas

AGRADECIMIENTOS

- Al Consejo Nacional de Ciencia y Tecnología (CONACYT), se reconoce con agradecimiento el apoyo financiero durante los estudios de Doctorado (Becas para Doctorado J.M. P.-G).
- A la Fundación Wallace, por el apoyo financiero a través de un convenio de la Universidad de Guadalajara y North Carolina State University (Convenio RG/014/2007), y en especial agradezco a los Drs. Major M. Goodman, de la Universidad de Carolina del Norte y Jerry L. Kermicle, de la Universidad de Wisconsin, por sus materiales y asesoría durante el desarrollo del proyecto.
- Al Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMyT), en especial al Dr. S. Taba, por haber proporcionado parte de los materiales usados en el estudio.
- Al Programa de Mejoramiento del Profesorado (Promep), agradezco el soporte financiero para la impresión de esta tesis.
- A la Universidad de Guadalajara y en especial al Centro Universitario de Ciencias Biológicas y Agropecuarias, por el programa del Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas (BEMARENA.
- A todos mis maestros del BEMARENA, por la educación, preparación y profesionalismo que mostraron a lo largo del proceso de aprendizaje en las aulas, laboratorios y campos experimentales.
- Agradezco toda la enseñanza y consejos que recibí del **Dr. José de Jesús Sánchez González.** Con apoyo y tiempo brindado durante el tiempo transcurrido del estudio y dirección de la investigación, así como su acertada dirección, revisión y corrección de este trabajo, mi respeto y admiración por siempre.
- Igualmente agradezco los consejos y paciencia que recibí del **Dr. Lino de la Cruz Larios.** Por su gran apoyo, esfuerzo y dedicación en la realización del presente estudio.
- Así también, agradezco el haber sido parte de mi cuerpo tutorial al **Dr. José Ron Parra.** Por su apoyo y revisión de este trabajo.
- Al Depertamento de Producción Agrícola, en especial al Dr. Salvador A. Hurtado. Por el apoyo como autoridad otorgada para la realización de mi estudio.

DEDICATORIAS

A mis hijos, Miguel Alberto y Beatriz María, son mi fortaleza y coraje para vivir esta vida.

A mi esposa, Beatriz, cuyo empuje valió para salir fortalecido y concluir el estudio

A mi madre, Ma. Carmen, que nunca dejó de rezar por mí para que me vaya bien.

A mis hermanas y hermanos, sobrinos, compadres y amigos, a quienes les deseo tengan como meta superarse día a día tanto en lo espiritual como en lo intelectual.

A mis compañeros de trabajo (INCITES e IMAREFI) y a mis compañeros de estudio (generación 2007-B), quienes día a día tienen como meta superarse cada vez más en lo intelectual y en sus labores diaras.

Creo que ésta vida no acaba con la muerte, sino que continúa con la resurrección que Dios nos ha prometido. Dios espero que llegado el tiempo me recibas.

ÍNDICE

	pág
Índice	i
Lista de Cuadros	i
Lista de figuras	vii
Resumen	i
Abstract	3
I. INTRODUCCIÓN	1
1. Objetivos	3
2. Hipótesis	2
II. REVISIÓN DE LITERATURA	4
2.1. Diversidad genética del género Zea	4
2.2. Flujo genético entre especies cultivadas y especies silvestres	(
2.3. Interacción polen-estigma	,
2.4. Incompatibilidad gametofítica	8
2.5. Tipos de acción génica de los genes de incompatibilidad	13
2.6. Probadores de incompatibilidad	16
III. MATERIALES Y MÉTODOS	18
3.1. Sitio de estudio	18
3.2. Establecimiento de experimentos en campo	18
3.3. Material genético	18
3.3.1. Líneas básicas para la obtención de probadores	18
3.3.2. Híbridos comerciales de maíz	19
3.3.3. Razas Mexicanas y Sudamericanas de maíz	20
3.3.4. Formación de probadores hembra dominantes locus ga1 y tcb1	22
3.3.5. Elección de probadores macho recesivo (PM)	23
3.3.6. Evaluación de probadores hembra dominante (PH)	23
3.3.7. Líneas puras del CIMMyT	25
3.4. Variable de estudio	26
3.5. Pruebas de normalidad	27
3.6. Transformaciones	28
3.7. Modelos estadísticos	29
3.8. Análisis estadístico	29

	pág.
3.8.1. Probadores de la incompatibilidad	29
3.8.2. Híbridos y razas de maíz	30
3.9. Prueba de Hipótesis	32
3.10. Criterios para determinar la presencia de factores de incompatibilidad	32
3.11. Criterios para determinar el grupo gametofítico de incompatibilidad	33
3.12. Transferencia de genes	34
IV. RESULTADOS	35
4.1. Probadores de Incompatibilidad	35
4.1.1. Locus <i>ga1</i>	35
4.1.2. Locus <i>tcb1</i>	41
4.2. Híbridos comerciales	49
4.2.1. Locus <i>ga1</i>	49
4.2.2. Locus <i>tcb1</i>	66
4.3. Razas Mexicanas	80
4.3.1. Locus <i>ga1</i>	80
4.3.2. Locus <i>tcb1</i>	96
4.4. Razas Sudamericanas	106
4.4.1. Locus <i>ga1</i>	106
4.4.2. Locus <i>tcb1</i>	117
4.5. Líneas de maíz del CIMMyT	123
4.5.1. Locus <i>ga1</i>	123
4.6. Distribución geográfica de los sistemas de incompatibilidad <i>ga1</i> y <i>tcb1</i> en las razas de maíz de México y de Sudamérica	124
4.7. Protocolo de transferencia de genes de incompatibilidad a maíz: caso QPM.	126
V. DISCUSIÓN	132
VI. CONCLUSIONES	137
VII. LITERATURA CITADA	138
VIII ADÉNDICE	1/19

LISTA DE CUADROS

		pág.
Cuadro 1	Modificación del mapa genético del maíz de 1995 de Neuffer et al. (1997).	12
Cuadro 2	Coordenadas de mapa para el locus ga1.	14
Cuadro 3	Coordenadas de mapa para el locus tcb1.	14
Cuadro 4	Material utilizado para llevar a cabo las pruebas de incompatibilidad de los loci $ga1$, $ga2$ y $tcb1$.	19
Cuadro 5	Probadores hembra y macho para incompatibilidad, genotipo, origen, año de evaluación.	24
Cuadro 6	Líneas puras de maíz del CIMMyT evaluadas con probadores para los sistemas de incompatibilidad gametofítica <i>ga1</i> y <i>tcb1</i> .	26
Cuadro 7	Transformaciones realizadas a los datos de campo.	28
Cuadro 8	Prueba de normalidad para probadores de incompatibilidad locus <i>ga1</i> años 2007-2009.	35
Cuadro 9	Cuadrados medios del análisis de varianza locus <i>ga1</i> de las variables MEDGR ^{_INV+1} y PORCGR a través de años (2007 a 2009) y probadores macho recesivo en el campo experimental CUCBA.	36
Cuadro 10	Cuadrados medios del análisis de varianza locus <i>ga1</i> para las variables MEDGR ^{_INV+1} y PORCGR de los años 2007 a 2009, excluyendo algunos probadores hembra en el campo experimental del CUCBA.	37
Cuadro 11	Promedio del llenado de grano en mazorca de los probadores hembra locus gal , años 2007 a 2009.	37
Cuadro 12	Promedio del llenado de grano en mazorca de los probadores macho para el locus $ga1$, años 2007 a 2009.	38
Cuadro 13	Parámetros de estabilidad para probadores $Ga1$ - $S/Ga1$ - S , media (μ), coeficiente de regresión (β) y desviaciones de regresión (S^2 di) para el llenado de grano en mazorca del sistema de incompatibilidad $ga1$ bajo el modelo de regresión de EBERHART y RUSSELL (1966), para 15 y 18 probadores hembra, años 2007 y 2008 respectivamente.	40
Cuadro 14	Prueba de Normalidad para probadores de incompatibilidad locus <i>tcb1</i> años 2007-2009.	41
Cuadro 15	Cuadrados medios del análisis de varianza del locus <i>tcb1</i> de las variables MEDGR y PORCGR a través de años (2007 a 2009)y probadores macho (<i>tcb1/tcb1</i>) en el campo experimental CUCBA.	42
Cuadro 16	Cuadrados medios del análisis de varianza locus <i>tcb1</i> variables MEDGR ^{_INV+1} y PORCGR de los años 2007 a 2009 excluyendo probadores hembra con altos llenados de grano en el campo experimental del CUCBA.	43

		pág.
Cuadro 17	Promedio del llenado de grano en mazorca de los probadores hembra locus <i>tcb1</i> , años 2007 a 2009.	43
Cuadro 18	Promedios del llenado de grano en mazorca de los probadores macho para el locus $tcb1$, años 2007 a 2009.	44
Cuadro 19	Parámetros de estabilidad para probadores $Tcb1$ - S / -, media (μ), coeficiente de regresión (β) y desviaciones de regresión (S^2 di) para el llenado de grano en mazorca del sistema de incompatibilidad $tcb1$ bajo el modelo de regresión de EBERHART y RUSSELL (1966), para 8 y 14 probadores hembra, años 2007 y 2008 respectivamente.	46
Cuadro 20	Porcentajes del llenado de grano en mazorca de probadores con libre polinización (PL's), año 2009 en los campos experimentales del CUCBA.	47
Cuadro 21	Pruebas de normalidad de los datos de campo y transformaciones en los híbridos comerciales de los sistemas de incompatibilidad <i>ga1</i> y <i>tcb1</i> .	49
Cuadro 22	Cuadrados medios del análisis de varianza del sistema de incompatibilidad <i>ga1</i> en híbridos de maíz de Instituciones y Empresas para probador macho recesivo y probador hembra dominante, durante los años 2005 a 2009 en los campos experimentales del CUCBA.	50
Cuadro 23	Promedios de llenado de grano en mazorca de los híbridos comerciales con probadores macho recesivo y hembras dominantes (<i>Ga1-S</i> y <i>Tcb1-S</i>) y prueba de Dunnett al 0.05 de probabilidad.	51
Cuadro 24	Propuesta de la constitución genotípica del sistema de incompatibilidad <i>ga1</i> , para híbridos comerciales de instituciones públicas y empresas privadas, años 2005 a 2009 en los campos experimentales del CUCBA.	54
Cuadro 25	Distribución de los alelos de incompatibilidad del locus <i>ga1</i> en Empresas e Instituciones para híbridos comerciales sembrados durante los años 2007-2009, en los campos experimentales del CUCBA.	65
Cuadro 26	Porcentajes de híbridos con presencia de <i>ga1</i> , <i>Ga1-m</i> y <i>Ga1-S</i> evaluados durante los años 2005-2009 en los campos experimentales del CUCBA.	65
Cuadro 27	Análisis de varianza del locus de incompatibilidad <i>tcb1</i> en híbridos de maíz de Instituciones y Empresas evaluados durante el año 2009 en los campos experimentales del CUCBA.	66
Cuadro 28	Promedios en el llenado de grano en mazorca de los híbridos comerciales con probadores hembra dominante del locus de incompatibilidad <i>tcb1</i> en los campos experimentales del CUCBA.	66
Cuadro 29	Propuesta de alelos detectados del sistema de incompatibilidad <i>tcb1</i> , para híbridos comerciales de instituciones públicas y empresas privadas durante el año 2009 en los campos experimentales del CUCBA, con los probadores hembra LUG03xTIC1.1 y CIMMyTxTIC1.1 ((los promedios con el probador recesivo ver Cuadro 24).	69

		pag.
Cuadro 30	Pruebas de normalidad de los datos de campo y transformaciones de las razas Mexicanas de los sistemas de incompatibilidad <i>ga1</i> y <i>tcb1</i> .	80
Cuadro 31	Análisis de varianza del sistema de incompatibilidad <i>ga1</i> en razas Mexicanas de maíz con los probadores recesivo y dominante (<i>Ga1-S</i>), durante los años 2005 a 2009 en los campos experimentales del CUCBA.	81
Cuadro 32	Promedios de la prueba de Dunnett para la variable llenado de grano en mazorca de las razas Mexicanas con probador macho recesivo y probadores hembras (<i>Ga1-S/Ga1-S</i> y <i>Tcb1-S/-</i>) en los campos experimentales del CUCBA.	82
Cuadro 33	Propuesta de alelos detectados del sistema de incompatibilidad <i>ga1</i> , para razas Mexicanas y accesiones, durante los años 2007 a 2009 en los campos experimentales del CUCBA.	86
Cuadro 34	Porcentaje de alelos detectados del locus <i>ga1</i> en las razas Mexicanas evaluadas durante los años de siembra 2005 a 2009, en los campos experimentales del CUCBA.	96
Cuadro 35	Análisis de varianza del locus de incompatibilidad <i>tcb1</i> en razas Mexicanas de maíz, durante el año 2009 en los campos experimentales del CUCBA.	97
Cuadro 36	Promedios en el llenado de grano en mazorca de las razas Mexicanas cuando con probadores hembra del sistema de incompatibilidad <i>tcb1</i> en los campos experimentales del CUCBA.	97
Cuadro 37	Propuesta de alelos detectados en el sistema de incompatibilidad <i>tcb1</i> para razas Mexicanas de maíz, año 2009 en los campos experimentales del CUCBA, con los probadores hembra LUG03xTIC1.1, CIMMyTxTIC1.1 y CIMMyTxTIC1.5 (los promedios con el probador recesivo ver Cuadro 33).	99
Cuadro 38	Pruebas de normalidad de los datos de campo y transformaciones de las razas Sudamericanas de los sistemas de incompatibilidad <i>ga1</i> y <i>tcb1</i> .	106
Cuadro 39	Análisis de varianza del promedio del llenado de grano en mazorca en razas Sudamericanas con los probadores homocigotes <i>ga1/ga1</i> y <i>Ga1-S/Ga1-S</i> , durante los años 2007 a 2009, en los campos experimentales del CUCBA	107
Cuadro 40	Promedios de la prueba de Dunnett para la variable llenado de grano en mazorca de las razas Sudamericanas con probador macho recesivo y probadores hembras (<i>Ga1-S/Ga1-S</i> y <i>Tcb1-S/-</i>) en los campos experimentales del CUCBA.	108
Cuadro 41	Propuesta de la estructura alélica del sistema de incompatibilidad <i>ga1</i> , para razas Sudamericanas durante los años 2007 a 2009 en los campos experimentales del CUCBA.	111
Cuadro 42	Porcentaje de alelos detectados del locus <i>ga1</i> en las razas Sudamericanas evaluadas durante los años 2007-2009 en los campos experimentales del CUCBA.	117
Cuadro 43	Análisis de varianza del locus de incompatibilidad <i>tcb1</i> en razas Sudamericanas de maíz durante el año 2009, en los campos experimentales del CUCBA.	118

	Sudamericanas de maíz durante el año 2009 en los campos experimentales del CUCBA, con los probadores hembra LUG03xTIC1.1, CIMMyTxTIC1.1 y CIMMyTxTIC1.5 (los promedios con el probador recesivo ver Cuadro 41).	
Cuadro 45	Constitución alélica propuesta del sistema de incompatibilidad <i>ga1</i> , para líneas puras de maíz del CIMMyT, años de evaluación 2007 a 2009, en los campos experimentales del CUCBA.	123
LISTA DE	CUADROS DE APÉNDICE	pág.
Cuadro 1A	Porcentajes de los alelos <i>Ga1-m</i> y <i>ga1</i> de tres empresas que están solicitando liberación de híbridos transgénicos en México.	148
Cuadro 2A	Análisis de varianza para parámetros de estabilidad para 15 probadores hembra dominante <i>Ga1-S/Ga1-S</i> , para el llenado de grano en mazorca del sistema de incompatibilidad <i>ga1</i> bajo el modelo de regresión de EBERHART y RUSSELL (1966), año 2007.	149
Cuadro 3A	Análisis de varianza para parámetros de estabilidad para 18 probadores hembra dominante <i>Ga1-S/Ga1-S</i> , para el llenado de grano en mazorca del sistema de incompatibilidad <i>ga1</i> bajo el modelo de regresión de EBERHART y RUSSELL (1966), año 2008.	150
Cuadro 4A	Análisis de varianza para parámetros de estabilidad para 8 probadores hembra dominante <i>Tcb1-S/</i> -, para el llenado de grano en mazorca del sistema de incompatibilidad <i>tcb1</i> bajo el modelo de regresión de EBERHART y RUSSELL (1966), año 2007.	151
Cuadro 5A	Análisis de varianza para parámetros de estabilidad para 14 probadores hembra dominante <i>Tcb1-S/-</i> , para el llenado de grano en mazorca del sistema de incompatibilidad <i>tcb1</i> bajo el modelo de regresión de EBERHART y RUSSELL (1966), año 2008.	152

Propuesta de alelos detectados en el sistema de incompatibilidad tcb1, para razas

Cuadro 44

pág.

119

LISTA DE FIGURAS

		pág.
Figura 1	Relaciones de compatibilidad polen-estigma en <i>Zea</i> , para los sistemas de incompatibilidad loci <i>ga1</i> y <i>tcb1</i> .	13
Figura 2	Posición de los alelos de incompatibilidad dentro de su cromosoma de origen	15
Figura 3	Sistema gametofítico de incompatibilidad cruzada (cross-incompatibility)	16
Figura 4	Híbridos comerciales de maíz por Institución/Empresa	20
Figura 5	Accesiones evaluadas de razas Mexicanas de maíz.	21
Figura 6	Accesiones evaluadas de razas Sudamericanas de maíz.	22
Figura 7	Distribución geográfica de los alelos de incompatibilidad <i>Ga1-S</i> () y TIC/- (), y de las accesiones sin alelos de incompatibilidad () en México y Sudamérica.	125
Figura 8	Método de retrocruzamiento hacia el alelo dominante.	129
Figura 9	Porcentajes del proceso de incorporación del progenitor no recurrente o donador (color gris claro) y recuperación del progenitor recurrente (color gris oscuro).	130

Resumen

El objetivo de este trabajo fue la detección de los alelos de incompatibilidad en híbridos comerciales y razas de maíz de México y de Sudamérica. El estudio se efectúo en el campo experimental del CUCBA-UdeG en Zapopan, Jalisco, México, durante los años de siembra 2007 a 2009. La metodología para la caracterización de materiales de interés se realizó con base en el uso de probadores con constitución genética conocida: a) probador macho recesivo (PM), b) probador hembra dominante (PH). Para el locus gal, en los híbridos comerciales se detectó la presencia en altas frecuencias de alelo Gal-m con 65.4% y para gal de 34.2%; no se detectó el alelo Gal-S, responsable de la incompatibilidad. Con respecto al locus tcbl, en ningún de los híbrido comerciales evaluados estuvo presente el alelo Tcb1-S. El análisis de varianza para las razas Mexicanas presentó diferencias altamente significativas para las fuentes de variación Raza y Accesiones dentro de razas. Los porcentajes de los alelos fueron de 55.4% para Gal-m, 53.8% para el alelo Ga1-S y 15.7% para el alelo ga1; para el locus tcb1 el análisis de varianza sólo presentó diferencias altamente significativas para la fuente de variación Razas, detectando presencia de los alelos del complejo de incompatibilidad del teocintle (TIC/-) en las razas Elotes Occidentales y Maíz Dulce y en otras razas con presencia mayores al 10% como Dulcillo del Noroeste, Negrito y Reventador. El análisis de varianza para las razas Sudamericanas del locus gal presentó diferencias altamente significativas las fuentes de variación Razas y Accesiones dentro de razas. El alelo Gal-S se detectó en 62.9% de las accesiones, Gal-m con 38.5% y para gal con 28.3%; para el locus tcbl el análisis de varianza no presentó diferencias estadísticas, siendo las razas Chococeño, Pisankalla, Pisingallo, Pollo, Pop-Corn, con llenados parciales de grano mayores al 10%. Ninguno de los genes responsables de la incompatibilidad no recíproca se encontró en los híbridos comerciales de maíz evaluados. Se identificó en algunas razas de maíz el complejo de incompatibilidad del teocintle (TIC) el cual había sido descrito como único en teocintle.

Abstract

The aims were the detection of incompatibility alleles in commercial hybrids and maize races of Mexico and South America. The study was conducted at the experimental field of CUCBA-UdeG, Zapopan, Jalisco, Mexico, during the summer of 2007 to 2009. The methodology for the characterization of materials of interest were by using used of testers with known genetic constitution: a) recessive male tester (PM), and b) dominant female tester (PH). In commercial hybrids for the gal, allele Gal-m was observed in high frequencies with 65.4% and 34.2% gal allele, Ga1-S allele, responsible for the cross-incompatibility was not detected. Tcb1-S allele was not detected in any of the commercial hybrid characterized. Analysis of variance for the Mexican races showed highly significant differences for the sources of variation Race and Accessions within Races. The percentages of alleles were 55.4% for Ga1-m, 53.8% for allele Ga1-S and 15.7% for the gal allele. For locus tcbl, the analysis of variance showed highly significant differences only for the source of variation Races detecting the presence of complex incompatibility alleles from teosinte (TIC/ -) in races Elotes Occidentales and Maíz Dulce and other races with a presence greater than 10% such as Dulcillo del Noroeste, Negrito and Reventador. Analysis of variance for the South American races of gal locus showed highly significant differences for Races and Accessions within Races. The percentage of Gal-S allele was 62.9%, for Gal-m with 38.5% and 28.3% with gal; for tcbl locus analysis of variance did not show statistical differences. Maize races Chococeño, Pisankalla, Pisingallo, Pollo, Pop-Corn, had seed set greater than 10%. None of the genes responsible for non-reciprocal incompatibility was found in commercial corn hybrids evaluated. In some races of maize the teosinte incompatibility complex (TIC) was present, which had been described as unique in teosinte.

I. INTRODUCCIÓN

Con el creciente interés en las variedades de maíz de usos especiales, tanto en México como en los EE.UU. y Europa (Frei, 2005a), se ha propuesto el empleo de mecanismos de incompatibilidad entre grano de polen y estigmas para el mantenimiento de la pureza varietal y de la semilla original en la producción de semillas híbridas (Nelson, 1953; Frei, 2005a y 2005b; Magnussen y Hauser, 2007). Los agricultores que producen maíces de usos especiales como maíz dulce, maíz palomero, maíz de alta lisina, y variedades para consumo como elote tierno, requieren de un mecanismo para prevenir la hibridación indiscriminada del maíz comercial común de las siembras adyacentes. El flujo genético entre especies y variedades en la naturaleza y en los campos de los agricultores depende de varios mecanismos de aislamiento, incluyendo barreras geográficas y distancia, sincronía en floración y sistemas de incompatibilidad (Castillo y Goodman, 1997; Aylor, 2003). La incompatibilidad entre especies o variedades es uno de los mecanismos más efectivos que limitan o evitan el flujo genético (De la Cruz, 2007).

El conocimiento de los sistemas de incompatibilidad en maíz, podrán ser de importancia para controlar el flujo genético y así poder mantener la pureza genética de variedades o híbridos, en la producción de alimentos orgánicos o productos especiales como maíz dulce, maíz de alta lisina, maíces cerosos, maíces eloteros y maíces palomeros (el mercado europeo y ciertos segmentos del mercado en EE.UU. y México demandan grano de este cereal libre de organismos genéticamente modificados). Así mismo, en regiones del continente americano donde tradicionalmente se encuentran poblaciones de los parientes silvestres del maíz (teocintle: Zea spp.) y variedades nativas de maíz, la información de la constitución genotípica, con respecto a la incompatibilidad, de nuevas variedades e híbridos sembrados en el campo mexicano, podría ser útil para diseñar estrategias de conservación in situ y sistemas de monitoreo de las poblaciones (De la Cruz, 2007). Durante la última década, los sistemas de incompatibilidad en maíz se han considerado una alternativa segura para el aislamiento reproductivo (Frei, 2005b); en los EE. UU. (US Patent and Trademark Office, www.uspto.gov) se han patentado recientemente métodos para la producción de semillas que involucran los sistemas gametofíticos de incompatibilidad en maíz del locus gal y otra barrera genética exclusiva del teocintle el locus tcb1 (Teosinte crossing barrier-1). Las bases genéticas y moleculares de las barreras de incompatibilidad en plantas de polinización cruzada son necesarias para comprender mejor la incompatibilidad dentro del género Zea. Esta incompatibilidad es heredable y no recíproca, y los genes involucrados presentan acción génica de dominancia y

codominancia o dominancia parcial sobre el alelo recesivo. Se reconocen tres loci que son importantes como barreras de aislamiento: *ga1*, *tcb1* y *ga2* (Evans y Kermicle, 2001; Kermicle *et al.*, 2006; De la Cruz *et al.*, 2007; De la Cruz *et al.*, 2008a; De la Cruz *et al.*, 2008b; Kermicle y Evans, 2010).

Por otro lado, Sánchez *et al.* (2000b) reportan que en México y Sudamérica, se presenta una gran diversidad biológica de recursos fitogenéticos y un gran número de razas de maíces nativos denominados "Criollos"; cerca del 60 % de las especies de plantas en México son endémicas, entre ellas, varios parientes silvestres del maíz, conocidos colectivamente como teocintles (*Zea* spp.), y son reservorio natural de genes en contínua evolución.

El estudio de los sistemas de incompatibilidad en el género Zea es muy importante debido a que:

- (1) No se cuenta con una adecuada caracterización genética ni fisiológica;
- (2) Esos caracteres, genéticos sobre todo, serán de gran utilidad en la producción de nuevas variedades o híbridos que podrán ser usados por los agricultores en la obtención de productos orgánicos, maíz de usos especiales y maíz libre de organismos modificados genéticamente (OMGs);
- (3) En regiones de Latinoamérica en donde todavía se encuentran razas de maíz y poblaciones de teocintle, la información de su constitución genotípica y la de los híbridos comerciales, será de gran importancia en la planeación de programas de monitoreo y de conservación *in situ*.

Los efectos del flujo genético, vía polen, entre híbridos comerciales de maíz, razas de maíz y parientes cercanos denominados colectivamente "teocintles", se reflejan en mezclas de genes que pueden originar cambios drásticos en la diversidad genética (se amplía o se modifica la riqueza de genes), pérdida de genes en contínua evolución y futuras fuentes de genes para los programas de mejoramiento genético en maíz. Detectar la presencia de alelos de los sistemas de incompatibilidad reportados dentro de los complejos raciales del maíz, que abarcan desde los híbridos comerciales (algunos con genes no deseados) hasta las razas y parientes silvestres, ayudaría a evitar la contaminación genética y pérdida de la variabilidad genética de las poblaciones de maíz que pudieran estar en un estado altamente vulnerable por disminución de genes que le confieren ser maíz de "usos especiales".

1.1. Objetivos

- 1. Identificar líneas puras y cruzas simples de maíz para usarse como probadores de los factores de incompatibilidad en las especies de *Zea* de los loci *ga1* y *tcb1*.
- 2. Caracterizar la presencia de alelos, respecto a los factores de incompatibilidad en los híbridos comerciales de maíz que se siembran en México, y de las colecciones representativas de grupos raciales de maíz de México y Sudamérica.
- 3. Desarrollar un protocolo de transferencia de genes de incompatibilidad a poblaciones de "usos especiales" de maíz, para el mantenimiento de la pureza varietal y de la semilla original.

1.2. Hipótesis

Los sistemas de incompatibilidad se encuentran de manera aleatoria dentro de los híbridos comerciales y de los complejos raciales del maíz de México y Sudamérica.

II. REVISIÓN DE LITERATURA

2.1. Diversidad genética del género Zea

Smale y McBride (1996) definen a la diversidad genética como la variación o potencial de variación, entre todas las secuencias de genes, conocidos y desconocidos, que controlan el desarrollo biológico de un organismo, entre otros las plantas cultivadas, y como expresión en variación morfológica, que le confiere aspectos estéticos, rituales y de cultura.

La conservación de la diversidad genética requiere al menos dos estrategias, a) conservación *ex situ*, colecta de material genético, generalmente semillas y conservación en un banco de germoplasma, y b) conservación *in situ*, que permite a los procesos evolutivos seguir conservando las variedades en los campos de los agricultores, con el manejo y selección por parte de los agricultores (Rice *et al.*, 2006). En la conservación de la diversidad genética se incluyen las especies silvestres, por ser fundamentales en los procesos evolutivos de las especies domesticadas y por contener diferentes mutaciones sometidas a las fuerzas de la selección natural y a la deriva genética en el transcurso del tiempo (López-Fanjul y García-Dorado, 2010).

En México, el cultivo del maíz tiene su centro de origen y de diversidad genética (Wellhausen *et al.*, 1952; Sánchez *et al.*, 2000a), y ha sido ampliamente estudiado en aspectos evolutivos y de diversidad en el país y en el resto de Latinoamérica desde la década de 1940. Los estudios incluyen caracteres morfológicos, fisiológicos (Sánchez *et al.*, 1993), citológicos y bioquímicos, hasta estudios por medio del análisis de isoenzimas (Sánchez *et al.*, 2000a), ADN (Matsuoka *et al.*, 2002; Rice *et al.*, 2006), de adaptación climática y descriptores ecológicos (Ruíz *et al.*, 2008). En todos estos estudios se han incluido las "razas" y "complejos raciales" (Bird y Goodman, 1977). Por otra parte, se han investigado las barreras genéticas de la incompatibilidad en razas Mexicanas de maíz (Cíntora, 1963), poblaciones de teocintle (De la Cruz *et al.*, 2007) e híbridos no-transgénicos (De la Cruz *et al.*, 2008a). Recientes estudios de la diversidad genética, incluyen las reducciones en tamaño efectivo, que evitarían el incremento de las tasas de endogamia, la pérdida de la variación genética y la fijación de alelos desfavorables (Sánchez *et al.*, 2000a y 2000b; Godínez *et al.*, 2009)

La diversidad genética, es la base para los mejoradores de plantas, para adaptar los cultivos a las cambiantes condiciones climáticas, y de ella obtener fuentes de resistencia a enfermedades, entre otras. Además los parientes silvestres contienen genes que pueden incrementar significativamente los rendimientos de los actuales híbridos (Padilla *et al.*, 2002) y también de proveer con alelos de

enriquecimiento a los genes domésticos (Tanksley y McCouch, 1997). Nault y Findley (1982), descubrieron en *Zea diploperennis* el gran potencial de resistencia, desde tolerancia hasta inmunidad, a varios virus y micoplasmas que atacan el maíz, y además son únicas fuentes a nivel mundial. Benz *et al.* (1990) reportaron hibridación y retrocruzas deliberadas de milpilla y maíz por los campesinos, para incrementar la resistencia a las enfermedades y para incrementar la productividad del maíz. Guzmán e Iltis (1991) encontraron plantas dispersas de *Zea diploperennis* (milpilla) creciendo dentro de los campos de maíz con períodos de floración casi coincidentes, siendo la milpilla ligeramente adelantada al maíz, por lo que la hibridación no es rara.

Sánchez et al. (2000a), en un estudio de diversidad genética de 59 razas de maíz en México indica que existen altos niveles de variabilidad tanto entre como dentro de razas, sin embargo más del 65% de los alelos encontrados en las colectas estudiadas son raros, es decir, ocurren en frecuencias menores a 0.01, siendo los niveles más bajos de diversidad genética correspondientes a las variedades de usos especiales. Godínez et al. (2009) al estudiar reducciones en tamaño de las poblaciones en 67 poblaciones de teocintle (razas Mesa Central, Balsas y Z. diploperennis), encontraron resultados de alta diversidad y al igual poblaciones en estado crítico con riesgo de desaparecer por la falta de acciones de protección.

2.2. Flujo genético entre especies cultivadas y especies silvestres

Gutiérrez et al. (2010) usaron caracteres morfológicos y marcadores RAPD, en cruzas directa y recíproca del girasol cultivado (*Heliantus annuus* var. *macrocarpus*) y de *Heliantus petiolaris*, para investigar introgresión; frecuencias promedio de introgresión del girasol cultivado fueron muy bajas, del 0.02 % en las poblaciones silvestres. Arias y Rieseberg (1994) utilizando un marcador molecular del girasol cultivado, para documentar la incidencia y la tasa de escape de genes hacia las poblaciones silvestres encontraron un porcentaje de 27% del flujo de genes a 3 m de distancia, el cual disminuyó con la distancia, encontrando flujo de genes hasta los 1000 m de la población de origen y además sugieren que la distancia física por sí sola es poco probable que impida el flujo de genes entre especies cultivadas y de las poblaciones silvestres de los girasoles. Trucco et al. (2005) reporta hibridación interespecífica del amaranto en especies tipo maleza *Amaranthus hybridus*, planta monoica utilizada como hembra, y *A. tuberculatus*, planta dioica, homocigota dominante e insensibles a herbicidas, originando progenie hibrida que puede favorecer la evolución de la resistencia a los herbicidas.

El caso del maíz es similar a otros cultivos, Castillo y Goodman (1997) documentaron que la probabilidad de intercambio genético entre maíz y teocintle es menor que el intercambio entre el maíz mejorado y el maíz criollo, y si llegara a liberarse maíz transgénico, es altamente probable que la semilla sea trasladada, legal o ilegalmente, a diferentes lugares entre los que se incluye México y es casi seguro que habrá polinización cruzada con el tiempo. Magnussen y Hauser (2007) estudiaron la hibridación e introgresión de alelos entre zanahoria cultivada y zanahoria silvestre, desde la perspectiva de la producción de semillas, y Palaudelmàs *et al.* (2009) observaron que los híbridos de maíz de segunda generación o retrocruzas de plantas voluntarias, los alelos neutros pueden introgresar a las poblaciones silvestres cercanas y fijarse en las poblaciones (Magnussen y Hauser, 2007; Chen *et al.*, 2004). Baltazar *et al.* (2005) y Rodríguez *et al.* (2006) reportaron limitaciones para que el polen del maíz polinize estigmas de teocintle debidas a la diferencia en la estructura floral de ambos cultivos, también que el tamaño del polen del maíz es 15-30% de mayor diámetro que el polen del teocintle y este a su vez es susceptible a la desecación al estar expuesto a las condiciones atmosféricas que el polen del maíz, y la longitud de los estigmas del maíz son 50-60% más largos que los de teocintle.

2.3. Interacción polen-estigma

La polinización asegura la sobrevivencia de las especies y también es un medio para incrementar la diversidad genética, y con ello, el potencial de adaptación a nuevos ambientes (Sánchez *et al.*, 2004). Existen diferentes mecanismos de liberación, de transferencia y deposición del polen en los órganos sexuales de la hembra (Edlund *et al.*, 2004). La posición y morfología de las anteras y del pistilo tienen un proceso co-evolutivo por la forma de dispersión y recepción del polen, ayudado por el viento o animales (Sánchez *et al.*, 2004).

Si se trata de un estigma seco o húmedo, la receptividad está definida como la capacidad de capturar el polen por adhesión, para que se hidrate y por consiguiente germine el tubo polínico (Sánchez *et al.*, 2004), El tubo polínico crece dentro de las células especializadas papilares que interactúan directamente con el polen (Edlund *et al.*, 2004).

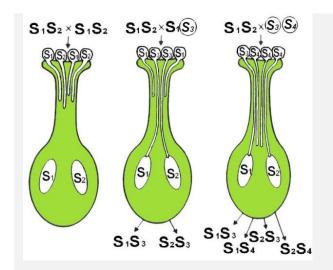
En estigmas secos, el polen es aceptado si es compatible o rechazado si es incompatible o de otra especie. Siendo los componentes constitutivos del macho determinantes en el locus-S por proteínas ricas en cisteína, y de la hembra en el locus-S (locus de autoincompatibilidad), determinado por la glicoproteína secretada por el estigma en la pared celular. El polen de las gramíneas, nunca está totalmente deshidratado y está metabólicamente activo cuando se desprende de las anteras, que lo

hace muy vulnerable, pero que germina en cuestión de minutos al adherirse al estigma (Sánchez *et al.*, 2004). La adhesión de polen en estigma húmedo requiere presencia de exudado, que puede ser acuoso, o lipídico, además de proteínas y azúcares. El polen al adherirse al estigma recibe hidratación del estilo (Edlund *et al.*, 2004; Sánchez *et al.*, 2004), que hipotéticamente iniciaría el proceso metabólico del desarrollo del tubo polínico, en su opinión faltan estudios sobre este concepto. Aylor (2003) reporta que la deshidratación del polen lo puede llevar a viajar grandes distancias.

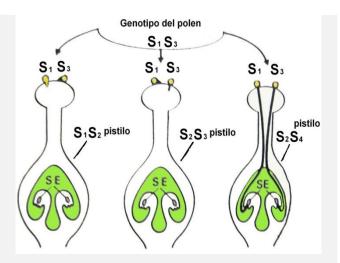
El escape de alelos modificados genéticamente tendrían una ventaja selectiva para fijarse en las especies silvestres, con la posibilidad de crear malezas más persistentes (Ellstrand, 1997), ya sean genes de resistencia a herbicidas u otros genes de organismos genéticamente modificados (OGM) liberados para uso comercial (Ureta *et al.*, 2008).

Bedinger y Fowler (2009) apoyan la idea de que la fecundidad de polen se ve afectada por genes expresados por ambos sistemas, esporofítico y gametofítico, expresado con vigor esporofítico que proporciona una gran influencia en la germinación del polen (positiva) y que la expresión gametofítica es la que afecta al crecimiento del tubo polínico; además estudiaron polen marcado radiactivamente de los factores gametofíticos (ga) de la incompatibilidad (locus gal) y demostraron que los tubos polínicos de gal crecen tan lento, que eventualmente dejan de crecer en estigmas de Gal-S. Las bases mecánicas (bioquímicas, fisiológicas) de estos efectos son desconocidos, incluso cuando estos loci son de genes individuales, o grupos de genes estrechamente ligados.

Las plantas de polinización cruzada regulan la hibridación a fin de equilibrar los efectos de la endogamia, la minimiza, además las plantas polinizadas por el viento, dependen de la interacción fisiológica entre el polen y el pistilo para regular la hibridación, muchas plantas poseen un mecanismo de cruzamiento genético para evitar la autofecundación y el cruzamiento entre parientes cercanos, reduciendo al mínimo la endogamia evitando sus efectos deletéreos (Nasrallah *et al.*, 1994; Kermicle, 2006).


2.4. Incompatibilidad gametofítica

La incompatibilidad (IC) sexual es un fenómeno muy extendido en las plantas y contribuye al establecimiento de barreras unilaterales en poblaciones auto-incompatibles y auto-compatibles (De Nettancourt, 1993). La autoincompatibilidad permite al pistilo de una flor distinguir entre su propio polen (genéticamente relacionadas) y el polen de otra planta (no relacionadas genéticamente). El


polen de la misma planta es rechazado, mientras que el polen de otra planta es aceptado para la fecundación (Kao y McCubbin, 1996).

Se conocen dos tipos de sistemas de incompatibilidad, el tipo homomórfico, en donde las flores de la misma especie tienen el mismo tipo morfológico, mientras que en el tipo heteromórfico, las flores de la misma especie pueden tener dos o tres tipos morfológicos; el reconocimiento del polen, aceptando o rechazando, será compatible sólo entre las flores de diferentes tipos morfológicos (Kao y McCubbin, 1996; Takebayashi *et al.*, 2003). El tipo homomórfico se clasifica en gametofítico y esporofítico y están en función de si el comportamiento del gametofito haploide, está determinado por el genotipo del polen de sí mismo en el sistema gametofítico o por el esporofito diploide de la planta de la cual el polen se derivó en el sistema esporofítico (Kao y McCubbin, 1996).

En el sistema gametofítico, el fenotipo del polen es codificado por su propio genoma haploide, mientras que en el sistema esporofítico, el fenotipo del polen está determinado por el esporofito (de los padres diploides del polen) y puede involucrar interacciones de dominancia entre los alelos (Glémin *et al.*, 2005). En la mayoría de los sistemas de incompatibilidad están presentes factores adicionales, referenciados como modificadores porque influyen en los sistemas de incompatibilidad (modifican la respuesta) y la actividad del locus-*S* depende de los antecedentes genéticos para determinar la especificidad de la incompatibilidad bioquímicamente (Cruz-García *et al.*, 2003).

Sistema gametofítico de autoincompatibilidad La polinización de la derecha es completamente compatible dando que los cuatro tipos de la progenie difieren en su genotipos locus *S*.

Sistema esporofítico de autoincompatibilidad La polinización de la derecha es compatible ya que no coinciden los alelos S. (SE= saco embrionario)

Fuente: adaptado de Liedl y Anderson (1993)

La autoincompatibilidad homomórfica es una barrera pre-fertilización, donde la germinación del polen y el desarrollo del tubo polínico es lento o es inhibido y el proceso de fertilización no ocurre cuando existe un reconocimiento entre el polen y el pistilo de un sólo locus S, con alelos múltiples que codifican esta especificidad (East y Mangelsdorf, 1925). El locus S se considera que tiene dos partes complementarias, uno expresado en el estilo y el otro en el polen (Ridout *et al.*, 2005). En las plantas diploides, el polen lleva a un alelo particular, S_1 , y el locus S no es capaz de fertilizar los óvulos de cualquier planta que también lleve este alelo (East y Mangelsdorf, 1925).

Los estudios evolutivos se han centrado en cómo los genes que causan las barreras de aislamiento se pueden fijar en una especie durante la especiación, a pesar del hecho de que dichos genes (de aislamiento) reducen la aptitud del resto de los genes que coexisten dentro de una población (Matsubara *et al.*, 2003) y como mecanismos de especiación biológica (Moyle y Graham, 2005). La incompatibilidad-cruzada (cross-incompatibility) es uno de las barreras más eficaces de aislamiento que restringe el flujo de genes entre las poblaciones divergentes y está clasificada dentro de las barreras de pre-y post-fertilización, en tanto la pre- fertilización es consecuencia de las interacciones entre el polen pistilo y la post-fertilización en una detención del desarrollo de los cigotos jóvenes (Matsubara *et al.*, 2003).

Hay tres mecanismos genéticos alternativos que podrían explicar la base de los factores de incompatibilidad intrínsecos o interacciones internas: a) reordenamientos cromosómicos; b) epistasis interlocus, conocida como interacciones Dobzhansky-Muller (Moyle y Graham, 2005); y c) más recientemente a las interacciones multialélicas (Koide *et al.*, 2008). Sin embargo, el interés actual se centra en identificar la naturaleza específica de los factores de incompatibilidad en el número de loci implicados, el tamaño de los efectos fenotípicos individuales, el modo de acción del gen y en la localización en el genoma, esto podría ayudar a identificar las fuerzas principales responsables de la formación de nuevas especies (Moyle y Graham, 2005).

Como resultado de varias décadas de estudios de genética, fisiología y moleculares, se ha logrado un buen entendimiento de los sistemas de auto-incompatibilidad en varias especies de plantas (Sakurai *et al.*, 2000; Martínez y Vogel, 2000; Walters y Wehner, 2002; Matsubara *et al.*, 2003; Moyle y Graham, 2005; Lee *et al.*, 2008). En contraste, las bases científicas de la incompatibilidad entre plantas de polinización cruzada están en un nivel muy bajo de entendimiento (Kermicle *et al.*, 2006).

Desde principios del siglo XX, se reportaron casos de falla en la producción de semilla al polinizar variedades de maíz palomero cuando se polinizó con una variedad de maíz dentado, sin embargo el cruzamiento recíproco tuvo éxito (Demerec, 1929).

Nelson (1996) presentó un reporte muy completo de los factores de incompatibilidad en maíz, en dicho trabajo esos factores se refirieron colectivamente como factores gametofíticos (*ga*).

Sobre la incompatibilidad no-recíproca en cruzas de maíz, Mangelsdorf y Jones (1926) observaron la F₂ del cruzamiento de maíz dulce (*su/su*) por maíz palomero "Rice Pop" (*Su/Su*) esperando obtener 25% de granos dulces, como resultado de segregación Mendeliana normal, y obtuvieron sólo el 16.2%, atribuyendo este dato a la presencia de un factor *Ga* (gen de incompatibilidad). Demerec (1929) confirmó la incompatibilidad no-recíproca al cruzar una variedad de maíz palomero "White Rice" por otra variedad (tipo grano dentado o harinoso), no obteniendo semilla, mientras que la forma en cruza recíproca obtuvo semilla, y al avanzar la semilla a la F₂ de la cruza de maíz dulce con el palomero "Rice Pearl" sólo obtuvo el 12.4%. Emerson (1934) explica que este comportamiento es por la existencia de ligamientos entre "*Su*" "*su*" y "*Ga*" "*ga*". Schwartz (1950) encuentra un tercer alelo que denomina *Ga-S* del mismo locus *ga* (Nelson, 1953), dominante sobre el recesivo *ga*.

La incompatibilidad polen-estigma distorsiona la transmisión de alelos en seis o más loci (Nelson, 1996). Si un alelo de cualquiera de los seis loci está presente en el pistilo, el polen al no tener ese alelo es desfavorecido o excluido (Kermicle, 2006). El locus *ga1* es el más estudiado pues el alelo *Ga1-S* causa esterilidad no-recíproca. Una planta *Ga1-S/Ga1-S* no acepta polen *ga1*; sin embargo, el polen *Ga1-S* de una planta *Ga1-S/Ga1-S* causa un llenado de grano completo en la mazorca de plantas *ga1/ga1*. El tercer alelo *Ga1-m* se ha definido como de alelo de acción neutral desde el punto de vista de la compatibilidad dado que fertiliza todos los genotipos incluyendo a *Ga1-S/Ga1-S* y acepta polen de los tres alelos. Este alelo *Ga1-m* se ha designado como referencia a su acción por medio del gameto masculino. Kermicle y Allen (1990), Kermicle (1997), Evans y Kermicle (2001), Kermicle *et al.* (2006) y Kermicle (2006), han investigado la incompatibilidad entre teocintle y maíz, y han reportando varios factores genéticos que limitan el cruzamiento entre ambas especies. Cuando se polinizan plantas de maíz con polen de teocintle se obtienen progenies híbridas sin dificultad alguna; sin embargo, las cruzas recíprocas, polen de maíz a estigmas de teocintle, no siempre tienen éxito. En cruzamientos para la determinación de la estructura alélica de la incompatibilidad en teocintle, De la Cruz *et al.* (2007) reportaron que en las razas Balsas, Durango y

Nobogame se encontraron predominantemente los alelos *Ga1-m* y *ga1*, y que el alelo *Ga1-S*, responsable de la incompatibilidad no-recíproca, predominó en las razas Chalco y Mesa Central en altas frecuencias, la mayoría de las veces en estado heterocigoto entre los tres alelos de incompatibilidad del locus *ga1*.

Evans y Kermicle (2001) describieron las características del locus *tcb1* (*Teosinte crossing barrier-1*), responsable del reconocimiento entre el polen y los estigmas, con funcionamiento análogo al sistema de incompatibilidad del locus *ga1*. Este alelo fue derivado del teocintle Mesa Central en el cual encontraron factores que rigen las características de incompatibilidad vinculados al cromosoma 4, y que denominaron 'Complejo de Incompatibilidad del Teocintle' (TIC), y reportaron al alelo *Tcb1-S* raro o ausente de las poblaciones de maíz. A continuación, del mapa genético del maíz de 1995 de Neuffer *et al.* (1997), se presentan siete de los factores gametofíticos encontrados en maíz, el octavo es información añadida (Cuadro 1).

Cuadro 1. Modificación del mapa genético del maíz de 1995 de Neuffer et al. (1997).

	7	C	D 1:1 ()	N.	
	Locus	Cromosoma	Descubridor(es)	Nota	
1	gal	(4S-13*)	Jones y Mangelsdorf, 1925	Razas popcorn y de América Central y Sudamérica.	
2	ga2	(5L-55)	Burnham, 1936	Granos de polen <i>Ga2</i> son competitivamente superior a <i>ga2</i> .	
3	ga7	(3L-167)	Rhoades, 1948	Polen de <i>ga7</i> heterocigote es 10-15% funcional, independientemente del genotipo de estigma.	
4	ga8	(9S cerca lo2)	Schwartz, 1951	Granos de polen $Ga8$ son competitivamente superiores a $ga8$ en estigmas $Ga8$.	
6	ga9 = ga1				
7	ga10	(5S cerca nl2)	Gonella y Peterson, 1975	Vinculado a 9 cM a2 14 cM bt1 (L.T. Miranda y L.E. Miranda).	
8	tcb1**	(4S-74)	Kermicle, Evans y Gerrish, 2001	Estigmas <i>Tcb1-S</i> , completamente dominantes sobre <i>tcb1</i> .	

Fuente: Modificación a Neuffer *et al.* (1997); S=brazo corto del cromosoma; L= brazo largo del cromosoma; distancias en centimorgan (cM) o unidad de mapa (*m.u.*= distancia entre dos genes ligados que corresponde a una frecuencia de recombinación del uno por ciento o también una unidad que representa una frecuencia de recombinación del uno por ciento entre los genes y se utiliza como una medida de la distancia entre los genes en la construcción de mapas genéticos); *= Evans y Kermicle (2001) lo reportan a 30 *m.u.*; **= Evans y Kermicle, 2001.

2.5. Tipos de acción génica de los genes de incompatibilidad

Los sistemas de incompatibilidad de los loci *ga1* y *tcb1*, causantes del reconocimiento o rechazo entre el estigma y el polen, son heredados de manera Mendeliana simple, sin embargo para el alelo *Ga1-S* su acción es parcialmente dominante sobre el alelo *ga1*, y es codominante para con el alelo *Ga1-m* (Figuras 1 y 3), mientras que el alelo *Tcb1-S* es completamente dominante sobre *tcb1* (Kermicle y Allen, 1990; De la Cruz, 2007; De la Cruz *et al.*, 2008b). Desde la perspectiva para la caracterización de materiales de interés, el uso de probadores confiables y que realicen una correcta caracterización, los probadores a utilizar con el alelo *Ga1-S* deben ser homocigotos, en tanto los probadores con el alelo *Tcb1-S* pueden ser homocigotos o heterocigotos (Kermicle y Allen, 1990). Sin embargo, los materiales probadores de ambos sistemas de incompatibilidad, requieren contar con la presencia de genes modificadores de la incompatibilidad que puedan inhibir o activar el efecto en el reconocimiento o rechazo de *Ga1-S* o de *Tcb1-S* (Nelson, 1953; Kermicle y Allen, 1990; Evans y Kermicle, 2001, Kermicle, 2006, De la Cruz *et al.*, 2008a y 2008b).

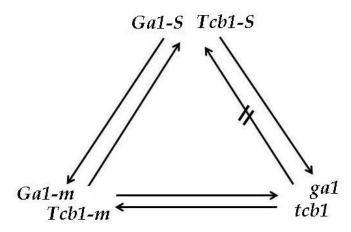


Figura 1. Relaciones de compatibilidad polen-estigma en *Zea*, para los sistemas de incompatibilidad loci *ga1* y *tcb1* (Kermicle y Evans, 2005).

Mediante el uso de marcadores moleculares en el "Maize Genetics and Genomics Database" el último reporte realizado en 2008, ubica al locus *ga1* en 27.00 +/-3 cM, mientras que mapa genético del maíz de 1995 de Neuffer *et al.* (1997) lo reporta con 13 cM y Kermicle lo reporta a 30 cM. Se estima el locus *ga1* entre la posición 5,474,221 y la posición 6,674,379 pares de bases (Pb) en el cromosoma 4 (Cuadro 2, Figura 2), con 1,200,158 Pb (Andorf *et al.*, 2010).

Cuadro2. Coordenadas de mapa para el locus ga1.

Locus	Mapa	Coordenadas*	Bin**
	bins 4	4.02 +/- 4	4.02
	EBF 1935 4	35.00	4.02
	Genetic 1997 4	30.00 +/- 10	4.02
gal	Genetic 2005 4	31.00 +/- 5	4.02
	Genetic 2008 4	27.00 +/- 3	
	IBM2 2008 Neighbors 4	103.71	
	Pioneer composite 1999 4	24.60	4.02

Adaptado de: www.maizegdb.org

Evans y Kermicle (2001) describieron el locus *Teosinte crossing barrier-1 (tcb1*), responsable del reconocimiento entre el polen y los estigmas, el cual es localizado en el cromosoma 4 del brazo corto, cerca de 6 *m.u.* de distancia del gen *sugary1* (80 *m.u.*) y cerca de 40 *m.u.* del gen *ga1* (30 *m.u.*). De manera similar al sistema de incompatibilidad al locus *ga1*, en este sistema, locus *tcb1*, existe el alelo *Tcb1-S*, el cual es completamente dominante sobre *tcb1* y un tercer alelo, *Tcb1-m*, con comportamiento neutral. Adicionalmente, para que *Tcb1-S* manifieste una barrera efectiva en los estigmas, se requiere la acción estabilizadora de un gene modificador ligado a *Tcb1* y *Ga1* (Evans y Kermicle, 2001). El "Maize Genetics and Genomics Database" reporta al locus *tcb1* en 61.00 +/-2 cM (Kermicle lo reporta a 74 cM; (Evans y Kermicle, 2001)), y se estimó entre la posición 32,240,789 y la posición 40,458,411 Pb en el cromosoma 4 (Cuadro 3, Figura 2), con 8,217,622 Pb (Andorf *et al.*, 2010).

Cuadro 3. Coordenadas de mapa para el locus *tcb1*.

Locus	Mapa	Coordenadas*	Bin**
	bins 4	4.04	4.04-4.05 ?
tcb1	Genetic 2008 4 IBM2 2008 Neighbors 4	61.00 +/- 2 243.98	4.04

Adaptado de: www.maizegdb.org

Kermicle y Evans (2010) describieron el locus de incompatibilidad *ga2* encontrado en algunas poblaciones de teocintle, reportando cuatro formas alélicas: *Ga2-S* (strong=fuerte), *Ga2-w* (weak=débil), encontrado en algunas estirpes genéticas de maíz, *Ga2-m* (alelo neutro: male=macho)

^{* =} Valor numérico de las posiciones de un locus en el mapa en cM.

^{** =} Los mapas genéticos son divididos en 100 segmentos, llamados bins. Los segmentos se designan con el número de cromosomas seguida de un número decimal de dos dígitos (4.02 con 32 genes en esta región del cromosoma).

^{* =} Valor numérico de las posiciones de un locus en el mapa en cM.

^{** =} Los mapas genéticos son divididos en 100 segmentos, llamados bins. Los segmentos se designan con el número de cromosomas seguida de un número decimal de dos dígitos.

y ga2 (alelo nulo). Además mencionan que el comportamiento genético de ga2, es paralelo al sistema de incompatibilidad de los sistemas ga1 y tcb1, el cual presenta la barrera del pistilo dominante, y la competencia de polen determinada por el genotipo individual del grano de polen. El alelo Ga2-w fue encontrado en teocintle subespecie mexicana con una barrera débil del pistilo; el alelo Ga2-S con una fuerte barrera del pistilo y sólo en el teocintle; un tercer alelo Ga2-m, con carencia de barrera en el pistilo, pero que compite para fertilizar pistilos de Ga2-S/-, y encontrado tanto en variedades criollas de maíz como en el teocintle; y por último, un cuarto alelo de efecto nulo, el alelo ga2. El sistema de incompatibilidad ga2 funciona como una barrera prezigótica.

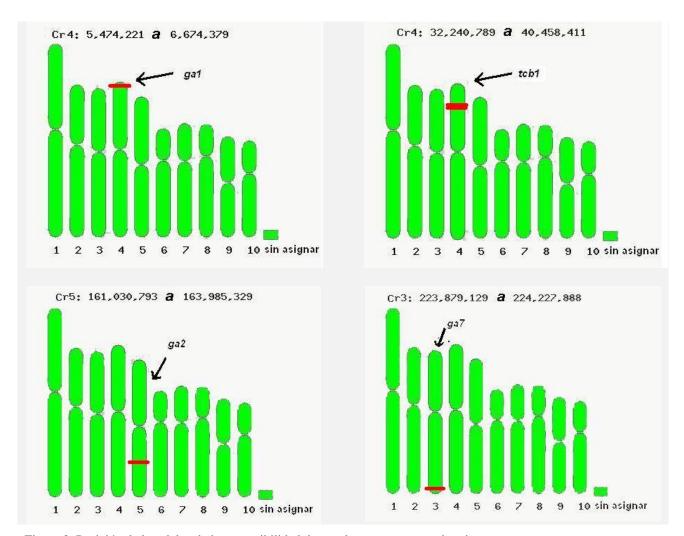


Figura 2. Posición de los alelos de incompatibilidad dentro de su cromosoma de origen

Adaptado de: www.maizegdb.org

**Adaptado de: www.maizegdb.org*

**Ada

El locus *ga1* se considera importante debido a la reacción de rechazo o de incompatibilidad norecíproca del alelo dominante *Ga1-S* sobre el alelo recesivo *ga1* (De la Cruz *et al.*, 2008a). Existen pocos estudios de este fenómeno de incompatibilidad en maíz en México, uno es realizado por Cíntora en 1963, con cerca de 230 accesiones del Programa Interamericano de Maíz y otros estudios recientes por De la Cruz *et al.*, en 2007 y 2008, realizando un estudio del locus *ga1* en 71 poblaciones de teocintle (De la Cruz *et al.*, 2007), el estudio de 84 híbridos comerciales del sector público y privado de México (De la Cruz *et al.*, 2008a) y la identificación de probadores hembra y probadores macho de incompatibilidad gametofítica de los loci *ga1* y *tcb1* (De la Cruz *et al.*, 2008b).



Figura 3. Sistema gametofítico de incompatibilidad cruzada (cross-incompatibility)

La incompatibilidad es uni-direccional, y condiciona esterilidad no recíproca con el locus ga1. Además existe un tercer alelo, Ga1-m (presenta menor capacidad de fertilización en mezcla con Ga1-S), que fertiliza todos los genotipos incluyendo Ga1-S/Ga1-S y puede ser fertilizado por todos los genotipos (los genes Ga1-S y Ga1-m presentan acción génica de dominancia y codominancia o dominancia sobre el alelo recesivo Ga1).

Fuente: adaptado de De la Cruz (2007).

2.6. Probadores de incompatibilidad

Se define como "probador deseable" aquel que combina la simplicidad en su uso con la máxima información en el comportamiento de las líneas (Matzinger, 1953). Así la prueba de progenie fue definida como "una prueba del valor de un genotipo basada en el comportamiento de su progenie producida en algún sistema de apareamiento definido" (Hallauer y Miranda, 1988). Además se define como un "buen probador" al que clasifica correctamente el comportamiento de las líneas y

discrimina eficientemente entre las líneas bajo prueba (Rawlings y Thompson, 1962). Los estudios de incompatibilidad requieren de probadores que clasifiquen los materiales de cualquier especie, sea vegetal o animal, y para el presente estudio en maíz, en cuanto a los factores genéticos de la incompatibilidad en si, y que discriminen con la simplicidad su uso y aporten la máxima información del comportamiento de los materiales a probar, además que clasifiquen correctamente el comportamiento de las líneas y discriminen eficientemente entre las líneas de maíz o sujetos bajo estudio, aún sin conocer el origen y pedigrí del material. Dentro de los sistemas de incompatibilidad se busca que los probadores involucrados clasifiquen y discriminen correctamente el comportamiento de cualquier tipo de material (De la Cruz *et al.*, 2008b).

III. MATERIALES Y MÉTODOS

3.1. Sitio de estudio

El estudio se efectúo en el campo experimental del Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA) de la Universidad de Guadalajara, ubicada en Zapopan, Jalisco, México, a 20° 44′ 42.5″ LN y 103° 30′ 52.5″ LO, en los años de siembra 2007, 2008 y 2009. El CUCBA está situado en Nextipac, Zapopan, Jalisco, México a una altitud de 1650 msnm y presenta una temperatura media en los meses de junio-octubre de 23.6 °C y una precipitación media anual de 816 mm.

3.2. Establecimiento de experimentos en campo

Durante tres años consecutivos, 2007, 2008 y 2009, se realizó la siembra en campo, bajo condiciones de temporal (secano). Se sembraron a finales del mes de junio en el campo experimental del CUCBA. El terreno se barbechó a 40 cm de profundidad, se dieron dos pasos de rastra y se surcó a 80 cm entre surcos. Se sembró manualmente en surcos de 5 m de longitud, distribuyendo la semilla lo más uniformemente posible con dos a tres semillas por "golpe", y a los 30 días se realizó un primer aclareo y otro a los 8 días siguientes. La fertilización fue orgánica a la siembra y una segunda fertilización con Urea a los 30 días después de la siembra. El control de plagas al follaje se realizó aplicando Clorpirifos (500 mL/ha) para el control gusano cogollero (*Spodoptera frugiperda*) y gusano elotero (*Heliothis zea*). Para el control de malezas se aplicó en pre-emergencia del cultivo Atrazina (3 L/ha) más Glifosato (1000 mL/ha) y para postemergencia Dicamba (500 mL/ha) y Paraquat (1000 mL/ha) para el control del chayotillo (*Sicyos* spp.) y otras malezas. Además, al final del ciclo de lluvias o principios de noviembre se eliminaron las malezas con desbrozadora.

3.3 Material genético

3.3.1. Líneas básicas para la obtención de probadores

Se utilizaron seis líneas derivadas de germoplasma tropical adaptadas a Carolina del Norte, seis líneas de origen templado provenientes de la Universidad de Wisconsin, seis líneas de origen subtropical de la Universidad de Guadalajara y una cruza simple subtropical proveniente del Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMyT). Estas líneas tienen constitución alélica conocida para los loci *ga1*, *ga2* y *tcb1*, además de cinco híbridos comerciales, igualmente con

constitución genética conocida, que fueron la base para la formación de los probadores de incompatibilidad (Cuadro 4).

Cuadro 4. Material utilizado para llevar a cabo las pruebas de incompatibilidad de los loci gal, ga2 y tcb1.

Línea	Origen	Ga1	Tcb1	Stb	Ga2
Linea	Origen	Locus 1	Locus 2	Locus 3	Locus 4
LUG14	$CUCBA^1$	ga1	tcb1		
LUG17S	CUCBA	ga1	tcb1		
LUG03	CUCBA	Ga1-m	tcb1		
LUG282	CUCBA	Ga1-m	tcb1		
LUG357	CUCBA	Ga1-m	tcb1		
LUG21	CUCBA	Ga1-m	tcb1		
NC296	NCSU	Ga1-S	tcb1		
NC348	NCSU	Ga1-S	tcb1		
NC354	NCSU	Ga1-S	tcb1		
NC396	NCSU	Ga1-S	tcb1		
NC452	NCSU	Ga1-S	tcb1		
NC462	NCSU	Ga1-S	tcb1		
Hy1001	WIS	Ga1-S	tcb1		
W22P4830	WIS	Ga1-S	tcb1		
W22P5270	WIS	Ga1-S	tcb1		
W22-TIC-1.1.	WIS	Ga1-m	Tcb1-S	Stb	
W22-TIC-1.5.	WIS	Ga1-m	Tcb1-S	Stb	
W22-TIC-1.7	WIS	Ga1-m	Tcb1-S	_*	
M-ILL-G9BxP87C5	CIMMyT	Ga1-m	tcb1		
W22-Ga2	WIS	ga1	tcb1		Ga2
G-8327A	Garst	ga1	tcb1		
P-32R21	Pioneer	ga1	tcb1		
P-31G66	Pioneer	ga1	tcb1		
DK-2010	Monsanto	ga1	tcb1		
H-8562A	Golden Harvest	gal	tcb1		

¹ CUCBA= Centro Univ. Cs. Biológicas y Agropecuarias, Univ. de Guadalajara; NCSU= North Carolina State University, Raleigh, USA; WIS = Wisconsin University, Madison, USA; CIMMyT= Centro Internacional de Mejoramiento de Maíz y Trigo; *Stb*= gen estabilizador del *Tcb1* (Kermicle y Allen, 1990); *= no presentes los genes estabilizadores del *Tcb1* (De la Cruz, 2007).

3.3.2. Híbridos comerciales de maíz

Durante el período 2007-2009 se realizó la caracterización la constitución alélica con respecto a los factores de incompatibilidad *ga1* y *tcb1* de 218 híbridos comerciales, pertenecientes a empresas del sector público y privado (Figura 4). Además en los años 2005 y 2006 De la Cruz *et al.* (2008b) iniciaron la caracterización de la constitución alélica de los híbridos comerciales, los datos fueron añadidos al presente estudio, para finalmente evaluar en total 237 híbridos comerciales.

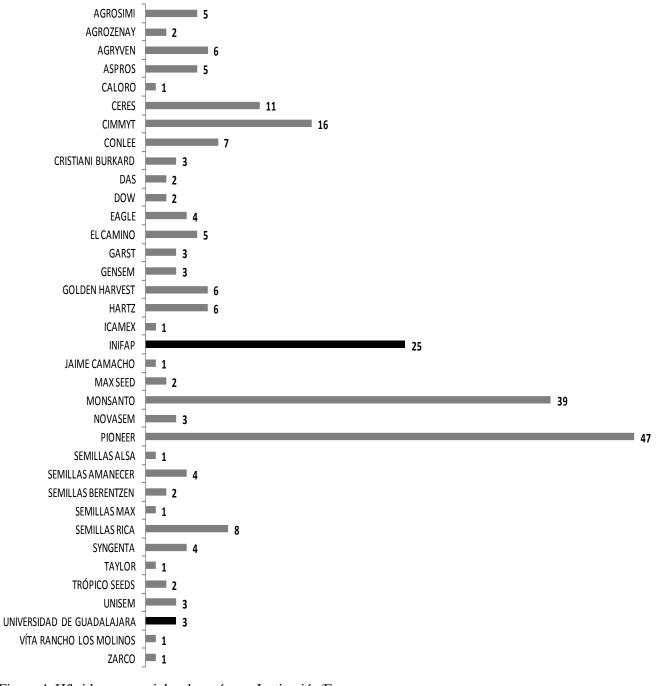


Figura 4. Híbridos comerciales de maíz por Institución/Empresa.

3.3.3. Razas Mexicanas y Sudamericanas de maíz

Se sembraron 239 accesiones representativas de 56 razas de maíz de México (Figura 5) y 132 accesiones de razas de maíz Sudamericanas, representativas de los complejos raciales de dulces y palomeros (Figura 6).

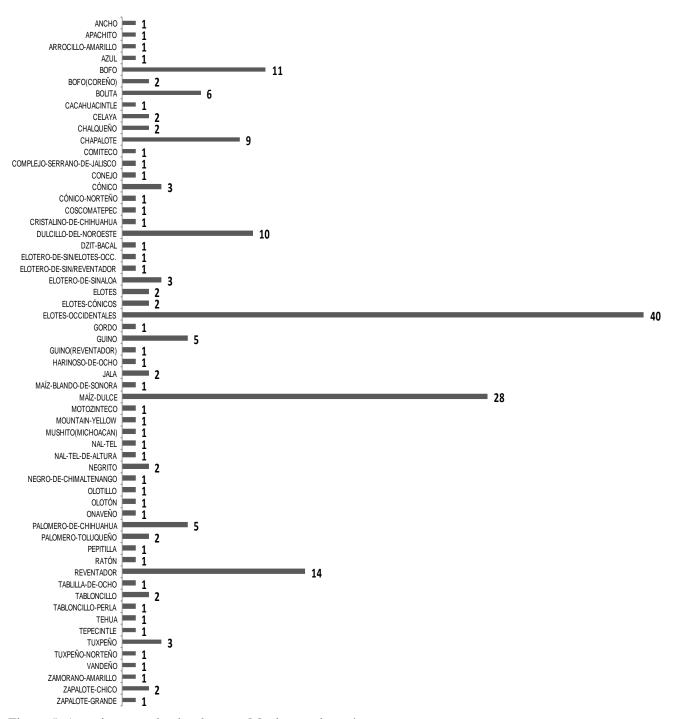


Figura 5. Accesiones evaluadas de razas Mexicanas de maíz.

Las 132 accesiones de Sudamérica se sembraron en 2007 con fines de conocer su adaptación y ciclo de floración, para en los siguientes años programar la siembra de acuerdo a la sincronía floral y realizar las cruzas con los probadores a ser utilizados. Las accesiones de las razas Mexicanas y Sudamericanas fueron proporcionadas por el CIMMyT y el Banco de Germoplasma del CUCBA de la Universidad de Guadalajara.

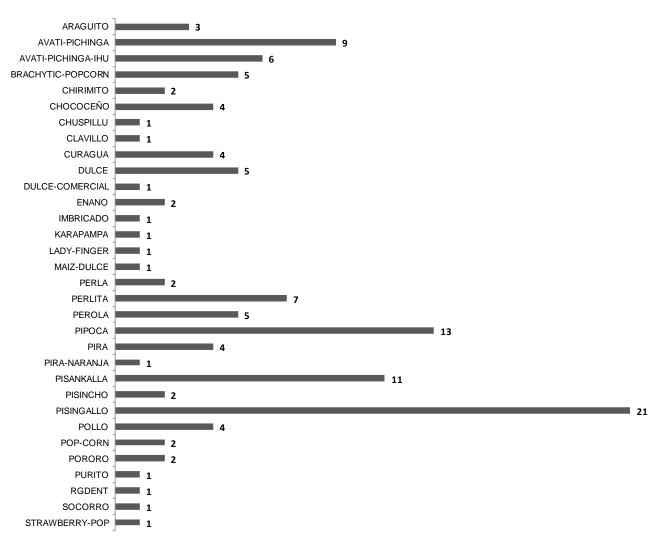


Figura 6. Accesiones evaluadas de razas Sudamericanas de maíz.

3.3.4. Formación de probadores hembra dominantes locus ga1 y tcb1

Los probadores usados en este estudio se formaron mediante el cruzamiento entre materiales proporcionados por la Universidad de Guadalajara, la Universidad de Wisconsin, North Carolina State University (NCSU) y el Centro Internacional de Mejoramiento de Maíz y Trigo (Cuadro 4). Varios alelos de incompatibilidad (*Ga1-S, Ga1-m, ga2, Tcb1-S, Tcb1-m y Stb*) se han incorporado a través de retrocruzamiento a la línea dentada W22 de la Universidad de Wisconsin. Las líneas isogénicas fueron donadas por el Dr. J. L. Kermicle. Además, se incorporaron al estudio cinco líneas de NCSU derivadas de híbridos tropicales, principalmente de Jamaica y El Salvador con el alelo *Ga1-S*, donadas por el Dr. M. M. Goodman. Adicionalmente se incorporó al estudio una cruza simple del Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMyT) sin factores de

incompatibilidad, y seis líneas puras donadas por el Dr. J. Ron Parra, del programa de maíz del CUCBA, sin factores de incompatibilidad conocidos.

Los probadores hembra (PH) con el alelo *Ga1-S* se obtuvieron mediante el cruzamiento de líneas homocigotas (*Ga1-S/Ga1-S*) NC296, NC348, NC354, NC396, NC452 y NC462 de origen tropical, por las líneas homocigotas (*Ga1-S/Ga1-S*) Hy1001, W22P4830 y W22P5270 de origen templado.

De la Cruz *et al.* (2008b) determinaron la constitución alélica de las líneas obtenidas en la Universidad de Guadalajara y del CIMMyT sin genes de incompatibilidad, que fueron utilizadas como progenitores en la formación de los probadores para los loci *ga1* y *tcb1*. Los probadores hembra del locus *tcb1*, son producto del cruzamiento de las líneas LUG03, LUG14, LUG282, LUG357, LUG21 y (M-ILL-G9BxP87C5) con el alelo recesivo *tcb1/tcb1* por las líneas W22-TIC-1.1 y W22-TIC-1.5 (Cuadro 2) con el alelo dominante *Tcb1-S/Tcb1-S*, para una constitución genotípica heterocigota del probador hembra *Tcb1-S/tcb1* del locus de incompatibilidad *tcb1*.

3.3.5. Elección de probadores macho recesivo (PM)

De la caracterización de híbridos comerciales realizada por De la Cruz *et al.* (2007, 2008a y 2008b), fueron seleccionados cinco probadores macho (PM) de origen comercial (DK-2010, G-8327A, H-8562A, P-31G66 y P-32R21) que son sembrados en México sin factores de incompatibilidad en estado homocigoto recesivo: *gal/gal tcb1/tcb1 ga2/ga2* (Cuadro 5).

3.3.6. Evaluación de probadores hembra dominante (PH)

Con la finalidad de evaluar la efectividad de las barreras para el cruzamiento con polen normal, en los años de siembra 2007 y 2008, se sembraron 42 probadores hembra (26 *Ga1-S/Ga1-S* y 16 *Tcb1-S/-*), establecidos en campo bajo un diseño de cruzamiento con cinco probadores macho (aportan el polen) sin factores de incompatibilidad (De la Cruz *et al.*, 2008a). Cada probador se sembró en parcelas de cuatro surcos por cinco de longitud con aproximadamente 80 plantas y dos repeticiones por año. Cada repetición fue sembrada en diferente fecha (8 días después de la primer fecha de siembra). Para cada tratamiento se realizaron polinizaciones manuales de cada probador hembra dominante (*Ga1-S y Tcb1-S*) por cada uno de los cinco probadores macho recesivos (Cuadro 5).

Para el año de siembra 2009 se estableció en campo un diseño de cruzamiento de sólo dos probadores macho sin factores de incompatibilidad (G-8327A y P-32R21). El diseño de cruzamientos fue de 32 probadores hembra (18 *Ga1-S/Ga1-S* y 14 *Tcb1-S/-*), en parcelas de dos

surcos de 5 m de longitud, en una sola repetición, con 40 plantas por parcela, además de seis probadores hembras heterocigotes con *Ga2/-*, y siete probadores hembra dominantes homocigotes con los alelos *Ga1-S/Tcb1-S*. Se realizaron como mínimo cinco polinizaciones manuales por tratamiento y repetición. Además todos los probadores hembra se sembraron en una segunda repetición con diferentes fechas de siembra, y que sirvieron para la estimación del llenado de grano de mazorcas de polinización libre.

Los probadores macho tuvieron varias fechas de siembra para tener coincidencia en floración, y por lo tanto, abundancia de polen viable en los tres años de evaluación.

Cuadro 5. Probadores hembra y macho para incompatibilidad, genotipo, origen, año de evaluación.

	Probador Hembra (PH)	Genotipo	Origen ¹	Año evaluación		
				2007	7-2008-2	2009
	Locus ga1					
1	Hy1001xNC296	Ga1-S / Ga1-S	WIS/NCSU	X	x	X
2	Hy1001xNC354	Ga1-S / Ga1-S	WIS /NCSU	X	X	X
3	Hy1001xNC462	Ga1-S / Ga1-S	WIS /NCSU	X	X	X
4	NC348xHy1001	Ga1-S / Ga1-S	NCSU/ WIS	X	X	X
5	NC348xW22P4830	Ga1-S / Ga1-S	NCSU/WIS	X	X	X
6	NC348xW22P5270	Ga1-S / Ga1-S	NCSU/WIS	X	X	X
7	NC354xW22P4830	Ga1-S / Ga1-S	NCSU/WIS	X	X	X
8	NC354xW22P5270	Ga1-S / Ga1-S	NCSU/WIS	X	X	X
9	W22P4830xNC296	Ga1-S / Ga1-S	WIS/NCSU	X	X	X
10	W22P4830xNC462	Ga1-S / Ga1-S	WIS/NCSU	X	X	X
11	W22P5270xNC296	Ga1-S / Ga1-S	WIS/NCSU	X	X	X
12	W22P5270xNC462	Ga1-S / Ga1-S	WIS/NCSU	X	X	X
13	W22P4830xNC396	Ga1-S / Ga1-S	WIS/NCSU	X		
14	W22P5270xNC396	Ga1-S / Ga1-S	WIS/NCSU	X		
15	Hy1001xNC396	Ga1-S / Ga1-S	WIS /NCSU	X		
16	W22P4830xNC452	Ga1-S / Ga1-S	NCSU/WIS		X	
17	W22P5270xNC452	Ga1-S / Ga1-S	NCSU/WIS		X	
18	NC452xHy1001	Ga1-S / Ga1-S	NCSU/ WIS		X	
19	W22P4830xLUG03	Ga1-S/Ga1-m	NCSU/CUCBA	X		
20	W22P4830xLUG357	Ga1-S/Ga1-m	NCSU/CUCBA	X		
21	W22P4830xLUG282	Ga1-S/Ga1-m	NCSU/CUCBA	X		
22	LUG03xNC396	Ga1-S/Ga1-m	CUCBA/NCSU	X		
23	LUG03xNC462	Ga1-S/Ga1-m	CUCBA/NCSU	X		
24	W22P4830x(NC462xNC354)	Ga1-S / Ga1-S	WIS/NCSU		X	X
25	W22P5270x(NC462xNC354)	Ga1-S / Ga1-S	WIS/NCSU		X	X
26	Hy1001x(NC462xNC354)	Ga1-S / Ga1-S	WIS/NCSU		X	X
27	LUG14xW22	ga1/ga1	CUCBA/WIS			X
28	LUG379xW22	ga1/ga1	CUCBA/WIS			X
29	LUGS17LxW22	ga1/ga1	CUCBA/WIS			X
	Locus gal y tcb1					
1	(NC462xNC354)xW22-TIC-1.1	Ga1-S y Tcb1-S	NCSU/WIS	X		X
2	NC462xW22-TIC-1.1	Gal-S y Tcbl-S	NCSU/WIS	X		X
_	· · · · · · · · · · · · · · · · · · ·	24				

	Probador Hembra (PH)	Genotipo	Origen ¹	Año	Año evaluación		
				2007	-2008-2	2009	
3	NC296xW22-TIC-1.1	Ga1-S y Tcb1-S	NCSU/WIS			X	
4	NC348xW22-TIC-1.1	Ga1-S y Tcb1-S	NCSU/WIS			X	
5	NC354xW22-TIC-1.1	Ga1-S y Tcb1-S	NCSU/WIS			X	
6	NC396xW22-TIC-1.1	Ga1-S y Tcb1-S	NCSU/WIS			X	
7	NC452xW22-TIC-1.1	Ga1-S y Tcb1-S	NCSU/WIS			X	
	Locus tcb1	<u> </u>					
1	LUG03xW22-TIC-1.1	<i>Tcb1-S/- (tcb1)</i>	CUCBA/WIS	X	X	X	
2	LUG03xW22-TIC-1.5	Tcb1- S /- $(tcb1)$	CUCBA/WIS	X	X	X	
3	LUG03xW22-TIC-1.7	Tcb1-S/- $(Tcb1$ -m)	CUCBA/WIS	X			
4	LUG14xW22-TIC-1.1	Tcb1-S/- (tcb1)	CUCBA/WIS	X	X	X	
5	LUG14xW22-TIC-1.5	Tcb1- S /- $(tcb1)$	CUCBA/WIS	X	X	X	
6	LUG14xW22-TIC-1.7	Tcb1- S /- $(Tcb1$ - m)	CUCBA/WIS	X			
7	LUG282xW22-TIC-1.1	<i>Tcb1-S/- (tcb1)</i>	CUCBA/WIS	X	X	X	
8	LUG282xW22-TIC-1.5	<i>Tcb1-S/- (tcb1)</i>	CUCBA/WIS	X	X	X	
9	LUG357xW22-TIC-1.1	<i>Tcb1-S/- (tcb1)</i>	CUCBA/WIS	X	X	X	
10	LUG357xW22-TIC-1.5	<i>Tcb1-S/- (tcb1)</i>	CUCBA/WIS	X	X	X	
11	LUG21xW22-TIC-1.1	<i>Tcb1-S/- (tcb1)</i>	CUCBA/WIS		X	X	
12	LUG21xW22-TIC-1.5	<i>Tcb1-S/- (tcb1)</i>	CUCBA/WIS		X	X	
13	LUGS17xW22-TIC-1.1	<i>Tcb1-S/- (tcb1)</i>	CUCBA/WIS		X	X	
14	LUGS17xW22-TIC-1.5	<i>Tcb1-S/- (tcb1)</i>	CUCBA/WIS		X	X	
15	(M-ILL-G9BxP87C5)xW22-TIC-1.1	<i>Tcb1-S/- (tcb1)</i>	CIMMyT/WIS		X	X	
16	(M-ILL-G9BxP87C5)xW22-TIC-1.5	<i>Tcb1-S/- (tcb1)</i>	CIMMyT/WIS		X	X	
	Locus ga2	<u> </u>					
1	LUG03xW22-Ga2	Ga1-m y Ga2	CUCBA/WIS	X		X	
2	LUG21xW22-Ga2	Ga1-m y Ga2	CUCBA/WIS			X	
3	LUG282xW22-Ga2	Ga1-m y Ga2	CUCBA/WIS			X	
4	LUG357xW22-Ga2	Ga1-m y Ga2	CUCBA/WIS			X	
5	LUG379xW22-Ga2	ga1 y Ga2	CUCBA/WIS			X	
6	LUGS17LxW22-Ga2	ga1 y Ga2	CUCBA/WIS			X	
	Devlador Mada (DM)	<u> </u>					
	Probador Macho (PM)						
1	DK-2010	ga1/ga, tcb1/tcb1.	Monsanto	X	X		
2	G-8327A	ga1/ga, tcb1/tcb1.	Garst	X	X	X	
3	H-8562A	ga1/ga, tcb1/tcb1.	Golden Harvest	X	X		
4	P-31G66	ga1/ga, tcb1/tcb1.	Pioneer	X	X		
5	P-32R21	ga1/ga, tcb1/tcb1.	Pioneer	X	X	X	

¹ NCSU= North Carolina State University, Raleigh, USA; WIS = Wisconsin University, Madison, USA; CUCBA= Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara; CIMMyT= Centro Internacional de Mejoramiento de Maíz y Trigo

3.3.7. Líneas puras del CIMMyT

Durante 2007, 2008 y 2009 se sembraron líneas de diferentes fuentes del CIMMyT, con el fin de determinar la presencia de genes de incompatibilidad (Cuadro 6). El locus evaluado fue *ga1*. Las líneas se obtuvieron del programa de Recursos Fitogenéticos del CIMMyT.

Cuadro 6. Líneas puras de maíz del CIMMyT evaluadas con probadores para los sistemas de incompatibilidad gametofítica *ga1* y *tcb1*.

No.	Genealogía
01	(CML-239 x GWIC)-1-23TL-1-2-B
02	B.P.V.C.236-1-2-2-2-1-TL-B*5
03	CML-242
04	CML-244
05	CML-246
06	CML-349
07	(CML-464 X CML-175)-1-21TL-2-2TL-B-B
08	(MES.AM.LIN.ILLxG9B-#-1-2x(89)6304Q/EWE3056)-B-3-2-1-1-2-5)-B-3-5TL-4-27-BTL-B-B
09	(P87C5F111-18-3-4-1-1-1-B x CML-176)-1-15TL-1-6TL-B-B
10	B.T.Z.T.V.C.PR93A-1-2-B-B x CML-176-1-1-2TL-B
11	CML-175
12	CML-176
13	CML-186
14	CML-321
15	CML-373
16	CML-78
17	CL 04368
18	CLQ-RCWQ10
19	CL-SPLW04
20	CML-142
21	CML-144
22	CML-159
23	CML-247
24	CML-254
25	CML-491
26	CML-494
27	CML-495
28	CML-503
29	Pob501C3F2 16-5-1-1-B-B-B-B
30	Pob502C3F2 10-3-2-1-B-B-B-B

De la Cruz *et al.* (2008a) evaluó las líneas del CUCBA-UdeG para determinar los factores de incompatibilidad que presentaron de los loci *gal* y *tcb1*.

3.4. Variable de estudio

Para el experimento de **probadores de la incompatibilidad**, la variable estudiada fue el llenado de grano en mazorca de las cruzas de probadores hembra por los probadores macho. La variable tuvo dos variantes, una medición cuantitativa y otra medición cualitativa. Al producto de cada planta individual (proveniente de cada cruzamiento y por cada sistema de incompatibilidad, locus *ga1* y locus *tcb1*) de cada tratamiento, se le contaron los granos por mazorca individual cosechada para conocer la **variable cuantitativa**, que es el promedio de cada tratamiento por el número de granos (**MEDGR**) de cada muestra. Para la **variable cualitativa**, se estimó por el porcentaje del llenado de grano en mazorca (**PORCGR**) de cada tratamiento, aplicando la metodología propuesta por Kermicle y Allen (1990), donde la estimación del llenado de grano en mazorca fue visualmente

calificado y el porcentaje fue redondeado con una aproximación al 10%. Por último, de los mismos tratamientos, se contaron los granos totales en mazorcas de polinización libre (PL) para la estimación del llenado de grano en mazorca con fines de comparación y mejor estimación del efecto de los factores de incompatibilidad. Esta variable es fundamental para la caracterización de la constitución genotípica de la incompatibilidad.

Para los experimentos de los híbridos comerciales, de las razas Mexicanas, de las razas Sudamericanas y de las líneas del CIMMyT, la variable llenado de grano en mazorca se estimó en porcentaje, siguiendo la metodología de Kermicle y Allen (1990).

Se tomaron fotografías de las mazorcas resultantes de los cruzamientos de los probadores hembra con los probadores macho de todos los tratamientos, tanto del experimento de los probadores de incompatibilidad como de los experimentos de híbridos comerciales, razas Mexicanas y Sudamericanas.

Además, como complemento, se tomaron datos del comportamiento agronómico de cada tratamiento (días a floración, altura de planta y mazorca, acame, enfermedades), para estimar la adaptabilidad de todos los materiales de maíz bajo estudio.

3.5. Pruebas de normalidad

Cuando se requiere probar hipótesis con base en el análisis de varianza, es requerida la normalidad de los datos (D'Agostino *et al.*, 1990), cuando no se cumple este requisito se recurre a la transformación de los datos o a la estadística no-paramétrica. En este estudio los datos originales recabados presentaron valores extremos de los porcentajes del llenado de grano con ceros y 100's, y muestras con diferente número de observaciones. Poncet *et al.* (1998) sugieren que las variables con una distribución bimodal sean transformadas en variables discretas por el 'método de momento incompleto' utilizado por Pearson en 1915. El análisis de diseños factoriales en la estadística noparamétrica se limita a diseños de un factor fijo y no analizan la interacción, como máximo aplican la alternativa del análisis de doble vía. (Brunner y Puri, 2001). Noguchi *et al.* (2011) han diseñado paquetes de software libre para realizar análisis no-paramétricos en experimentos factoriales.

Se realizó la prueba de normalidad para la variable llenado de grano en mazorca de los tres experimentos: híbridos comerciales, razas Mexicanas y razas Sudamericanas, con base en el sistema de análisis estadístico SAS (SAS Institute Inc., 1992), bajo el procedimiento UNIVARIATE.

Cuando los análisis referentes a normalidad de los datos fueron significativos, se procedió a usar la estadística no-paramétrica. Las pruebas de hipótesis en la estadística paramétrica, requieren de una distribución normal y de desviaciones estándar iguales. La estadística no-paramétrica, ha desarrollado pruebas y métodos que son independientes de la distribución de los datos y de sus correspondientes parámetros (Spiegel y Stephens, 2009) con más limitantes que la estadística paramétrica. Las pruebas están basadas en la función de una distribución empírica y asume que dentro de cada tratamiento las observaciones son independientes e idénticamente distribuidas, y los tratamientos son independientes entre sí o del uno del otro. El procedimiento NPAR1WAY de SAS calculó los análisis de varianza de una vía, bajo las hipótesis nulas de que no existen diferencia entre los híbridos y tampoco existen diferencias entre las instituciones; la prueba estadística asume una distribución *chi*-cuadrada asintótica con *r*-1 grados de libertad, donde *r* es el número de niveles de clase de los híbridos y las instituciones evaluadas, respectivamente. Una limitante de este procedimiento que impidió continuar con el análisis es que no proporciona las interacciones que pudieran darse entre las variables en el estudio (REPETICIONES*PH y *PM, AÑOS*PH y *PM, PH*PM, etc.), por lo que se recurrió al análisis de los datos con la estadística no-paramétrica de diseños factoriales con diseños de macros para el programa R (R development core team, 2010) y el programa estadístico en SAS "nparLD" (Brunner y Puri, 2001; Noguchi et al., 2011).

3.6. Transformaciones

En los casos que no existió normalidad en los datos, se realizaron las transformaciones a fin de lograr la normalidad de los mismos (Cuadro 7); cabe señalar que en algunos casos es útil agregar una unidad cuando se presenten ceros o unidades pequeñas en los datos.

Cuadro 7. Transformaciones realizadas a los datos de campo.

Tipo de transformación	Ecuación
Raíz cuadrada de la variable en análisis.	$Y' = \sqrt{Y}$
Raíz cuadrada de la variable en análisis y sumarle uno entero	$Y' = \sqrt{(Y+1)}$
La inversa de la variable en análisis más el uno entero (si existen ceros en los datos originales)	Y'=1/(Y+1)

Las ecuaciones para transformar los datos que incluyeron los datos originales y la suma de una unidad (+ 1) fueron útiles para lograr normalizar la información.

3.7. Modelos estadísticos

El modelo estadístico utilizado para el experimento de probadores de incompatibilidad fue:

$$Y ijk = \mu + H i + M j + (H M) ij + \mathcal{E} ijk$$

Donde:

 μ = Media general;

Y ij = llenado de grano en mazorca para el probador hembra i por el probador macho j;

Hi = efecto del probador hembra;

Mi = efecto del probador macho;

(HM)ij = efecto del la interacción probador hembra por probador macho;

 εijk = Error experimental

Y el modelo estadístico utilizado para los experimentos: híbridos comerciales, razas Mexicanas y razas Sudamericanas fue:

$$Y ij = \mu + R i + A j(i) + \varepsilon ij$$

Donde:

 μ = Media general;

Yij = llenado de grano en mazorca para la accesión i de la raza j;

Ri = efecto de razas o empresas;

A j(i).=Accesiones dentro de razas o empresas¹/;

 εij = Error experimental

3.8. Análisis estadístico

3.8.1. Probadores de la incompatibilidad

Para el experimento de probadores, los datos llenado de grano en mazorca, fueron sometidos a un análisis de normalidad y a un análisis de varianza bajo el procedimiento GLM con base en el sistema de análisis estadístico SAS (SAS Institute Inc., 1992) por año y por locus. Con base en los promedios, se llevó a cabo un análisis de estabilidad tomando como base el modelo de Eberhart y Russell (1966), adaptando el modelo con la siguiente modificación: **los probadores macho (PM) se tomaron como ambientes**. Además la matriz de datos fue compuesta por los promedios de llenado de grano en mazorca (MEDGR) de los probadores hembra (PH) y como columnas cada uno de los probadores machos (PM) recesivos. Debido a que se espera que un probador estable tenga valores cercanos a cero del llenado de grano en mazorca con todos los PM, se establecen como valores deseables β =0, $S^2 di$ =0 y μ =0. Igualmente los análisis se realizaron con base en el sistema de análisis estadístico SAS, versión 8.2 (SAS Institute, Cary, NC, USA).

^{1/}= cultivares de maíz: variedades, híbridos, razas.

Las fuentes de variación fueron los probadores hembra y probadores macho y la interacción entre ambos probadores.

Existen varios métodos para el análisis estadístico de las interacciones en general, y para la interacción Genotipo-Ambiente (GE) en particular, los cuales incluyen el uso de componentes de varianza y el uso de la regresión (Freeman, 1973). La interacción genotipo-ambiente (GE) ha sido estudiada por parte de las investigaciones relacionadas con los rendimientos de diversos cultivos (Eberhart y Russell, 1966; Wricke, 1962; Finlay y Wilkinson, 1963; Shukla, 1972). La metodología de Eberhart y Russell es utilizada por considerar simultáneamente el rendimiento, la estabilidad y adaptabilidad general, con ambientes favorables como desfavorables (Pacheco *et al.*, 1999; Cargnelutti *et al.*, 2007).

El método de Eberhart y Russell (1966), incluye el coeficiente de regresión y la varianza de desviaciones de regresión, los cuales se estiman con base en las medias de los genotipos en cada ambiente de evaluación y los efectos ambientales. Un genotipo deseable es aquel que presenta una media alta del factor en estudio (rendimiento), coeficiente de regresión igual a 1 y desviaciones de regresión igual a cero. Aún cuando hay varios métodos para analizar la interacción entre genotipos y ambientes, el modelo de Eberhart y Russell ha demostrado ser sencillo y de gran utilidad.

Por lo tanto, la identificación de líneas puras e híbridos de maíz con genes de incompatibilidad, las técnicas de incompatibilidad usadas en estudiar la interacción genotipo-ambiente, podrán ser utilizadas para detectar los mejores probadores de los factores de incompatibilidad en las especies del género Zea, especialmente de los loci gal y tcbl. El análisis de parámetros de estabilidad fue realizado con sólo dos años consecutivos, en que se contó con datos completos. La importancia de la adecuación del modelo Eberhart y Russell para la estabilidad, fue contar con mayor y más sólida información para la elección de probadores estables y consistentes con respecto a las barreras de incompatibilidad.

3.8.2. Híbridos y razas de maíz

Para determinar la presencia de *Ga1-S*, gene responsable de la incompatibilidad (locus *ga1*), fueron evaluados 218 híbridos comerciales en los años 2007-2008 (Cuadros 20 y 21, Figura 4); se añadió información de evaluaciones realizadas durante los años 2005 y 2006 (De la Cruz *et al.*, 2008a) para un total de 237 diferentes híbridos de 39 empresas del sector público y privado de la industria de

semillas. En los años de siembra 2007 y 2008 se sembraron 221 y 150 accesiones, respectivamente, representativas de las razas Mexicanas (Figura 5), se añadió información de evaluaciones de los años 2005 y 2006 (De la Cruz *et al.*, 2008a), (Cuadros 29 y 30). En cuanto a las razas Sudamericanas (Cuadros 37 y 38, Figura 6), en el año de siembra 2007 se sembraron 132 accesiones representativas de maíces dulces y palomeros (sólo 124 fueron evaluadas), con la finalidad de registrar su adaptación y sobre todo el rango de los días requeridos para llegar a la floración, para la planeación y siembra escalonada en los siguientes años.

Para el locus *ga1* se utilizaron dos probadores macho sin factores de incompatibilidad G-8327A y P-32R21 (*ga1/ga1*) que aportaron el polen a los híbridos comerciales y a las razas, y dos probadores hembra con genes de incompatibilidad NC348xW22P4830 y NC348xW22P5270 (*Ga1-S/Ga1-S*) que fueron polinizados con polen de los híbridos comerciales y de las razas de maíz. La determinación del genotipo de los híbridos comerciales y de las razas de maíz, se basaron en el resultado obtenido de ambos tipos de probadores (con y sin alelos de incompatibilidad).

Para el año 2009 con 122 accesiones de razas Mexicanas (Cuadros 29, 33 y 34), 73 accesiones de razas de Sudamérica (Cuadros 37 y 41) y 197 híbridos comerciales (Cuadros 20, 25 y 26) aportaron polen a los probadores dominantes hembra: LUG03xW22-TIC-1.1, (M-ILL-G9BxP87C5)xW22-TIC-1.1 y (M-ILL-G9BxP87C5)xW22-TIC-1.5, para la determinación de la presencia de alelos de incompatibilidad del locus *tcb1*.

Las fuentes de variación fueron las instituciones o razas y los híbridos comerciales o accesiones dentro de institución o raza; el error se generó con las repeticiones de cada probador sin factores o con factores de incompatibilidad de cada loci estudiado (*ga1* y *tcb1*).

La prueba de medias se realizó en base a la prueba de medias de Dunnett al 0.05 de probabilidad (Dunnett= D√2MSE/n, donde D= D de tabla de Dunnett; MSE= varianza de error estándar ; n= número total de individuos) bajo el procedimiento GLM del mismo programa de análisis estadísticos SAS (SAS Institute Inc., 1992), siendo los testigos de comparación aquellos con los valores de 100% de llenado de grano en mazorca para el caso de los probadores macho sin factores de incompatibilidad (recesivos y homocigotes), y con valores de 0% de llenado de grano en mazorca para el caso de los probadores hembra con factores de incompatibilidad.

Además se realizó el procedimiento estadístico no-paramétrico NPAR1WAY, que no requiere normalidad de los datos, bajo la hipótesis nula de que no existen diferencia entre los híbridos y entre las instituciones, y tampoco existen diferencias entre las accesiones y las razas de maíz. Este procedimiento se realizó porque alguno de los alelos de incompatibilidad no presentaron normalidad en la distribución de los datos, ya que se presentaron datos de 0 y 100% del llenado de grano en mazorca, tanto en los híbridos comerciales como en las razas Mexicanas y Sudamericanas. Para todas accesiones de las razas de Mexicanas y Sudamericanas de maíz y los híbridos comerciales, se registraron los días a floración femenina y masculina, y su comportamiento agronómico.

3.9. Prueba de Hipótesis

Con base en los análisis de varianza se establecieron las siguientes hipótesis para los cuatro experimentos (probadores de incompatibilidad, híbridos comerciales, razas Mexicanas y razas Sudamericanas):

1. Normalidad de los datos.

- Ho= Los probadores de incompatibilidad, los híbridos y las accesiones de maíz presentan normalidad en los datos, dentro de los sistemas de incompatibilidad de los loci *ga1* o *tcb1*.
- Ha= Al menos un probador de incompatibilidad, un híbrido comercial o una accesión de maíz no presentan normalidad en los datos dentro de los sistemas de incompatibilidad de los loci *gal* o *tcb1*.

2. Accesiones de híbridos comerciales, razas Mexicanas y razas Sudamericanas de maíz.

- Ho= Ninguna de las accesiones de los híbridos comerciales razas Mexicanas y razas Sudamericanas de maíz presentan sistemas de incompatibilidad del locus *ga1* o del locus *tcb1*.
- Ha= Al menos una accesión de los híbridos comerciales, razas Mexicanas y razas Sudamericanas de maíz presentan alguno de los sistemas de incompatibilidad *gal* o *tcb1*.

3.10. Criterios para determinar la presencia de factores de incompatibilidad

En el curso de la evaluación para determinar la presencia de factores de incompatibilidad, se usaron uno o más de los siguientes criterios:

Criterios genéticos

- a) Evaluación del llenado de grano en mazorca a partir de jilotes que fueron polinizados con polen *ga1* (PM), la cuantificación del número de granos por mazorca, se realizó por dos vías:
 - i) Conteo de cada grano presente en la mazorca (técnica cuantitativa)
 - ii) Estimación del porcentaje de presencia de grano en la mazorca(técnica cualitativa).
- b) Compatibilidad con los probadores *Ga1-S/Ga1-S* (evaluación del llenado de grano en mazorca).
- c) La estimación del porcentaje de llenado de grano en mazorca se realizó con los criterios de Kermicle y Allen (1990) que proponen la estimación de llenado de grano en mazorca visualmente redondeado con aproximación al 10%.

Criterios estadísticos

- d) La información de los análisis de varianza.
- e) Los tratamientos significativos que proporcionó la prueba de Dunnett.

3.11. Criterios para determinar el grupo gametofítico de incompatibilidad

En base a los criterios realizados por De la Cruz (2007) y por De la Cruz *et al.* (2008a) la propuesta para determinar los alelos detectados fue realizado mediante los resultados del llenado de grano en mazorca de ambos tipos de probadores, macho recesivo y hembra dominante, tanto para el locus *ga1* como para el locus *tcb1*. Se llevaron a cabo tres etapas.

- **Etapa 1. Probador macho recesivo (sin alelos de incompatibilidad):** cuando con el polen del probador macho recesivo no hubo llenado de grano y la prueba de Dunnett señaló valores estadísticamente iguales al testigo control con 0% de llenado de grano en la mazorca, se indicó la presencia de algún alelo de incompatibilidad (*Ga1-S*, *Tcb1-S*). En el caso de formación en el llenado de grano en la mazorca y la prueba de Dunnett señaló valores estadísticamente iguales al testigo control con 100% del llenado de grano en la mazorca, se indicó la presencia de los alelos neutros (*Ga1-m*, *Tcb1-m*) o recesivos (*ga1*, *tcb1*), y se continúo con la etapa 2.
- **Etapa 2. Cruzamientos al probador hembra dominante** *Ga1-S/Ga1-S*: excluidos los materiales a prueba con presencia de los alelos *Ga1-S* o *Tcb1-S*, el siguiente paso fue llevar polen del material a prueba a los probadores hembra dominantes. Cuando se observó llenado de

grano en mazorca del material a prueba y fue estadísticamente igual al control con 100% de llenado de grano en mazorca, de acuerdo a la prueba de Dunnett se indicó la presencia del alelo *Ga1-m*. Si no existió llenado de grano en mazorca y fue estadísticamente igual al control con 0% de llenado de grano, se interpretó como ausencia de alelos de incompatibilidad.

Etapa 3. Cruzamientos al probador hembra heterocigote dominante *Tcb1-S/-*: sin considerar los materiales con alelos *Ga1-S* o *Tcb1-S* de la Etapa 1, entonces: si no existió llenado de grano en mazorca y fue estadísticamente igual al control con 0% de llenado de grano en mazorca, se indicó el alelo recesivo *tcb1*. En cambio, si hubo llenado de grano en la mazorca y la prueba de Dunnett señaló valores estadísticamente iguales al control con 100% de llenado de grano, se indicó la presencia del alelo *Tcb1-m*.

Se pueden dar casos del material a prueba en estado heterocigoto con las posibles combinaciones de los tres alelos *Ga1-S*, *Ga1-m* y *ga1* para el locus *ga1* y *Tcb1-S*, *Tcb1-m* y *tcb1* para el locus *tcb1*. La caracterización entonces se realizó en base al promedio del llenado de grano en mazorca y al examen de las mazorcas individuales (del material a prueba) que resultaron del cruzamiento con ambos probadores, macho y hembra.

En el caso de llenados parciales en las mazorcas individuales, podrían deberse a la presencia de genes modificadores de locus *ga1* (Kermicle y Allen, 1990).

3.12. Transferencia de genes

Se desarrolló un protocolo de transferencia de los alelos de incompatibilidad con base al maíz de alta calidad de proteína. Para Smalley *et al.* (2004) la transferencia de genes ha sido utilizada para modificar el genotipo de las plantas con las técnicas de hibridación y de retrocruzamiento. Malvar *et al.* (2004) reportaron que el riesgo de perder alelos favorables es menor que la probabilidad de ganar alelos favorables para el rendimiento agronómico del progenitor recurrente, o en este estudio incorporar alelos de incompatibilidad sin demeritar el valor agronómico de la planta receptora. Además, con la hibridación se reunen en un sólo individuo los genes o características de los progenitores participantes, seguido de uno o varios retrocruzamiento para introducir sólo el gen de interés del progenitor donante y recuperar las características del progenitor recurrente.

IV. RESULTADOS

4.1. Probadores de Incompatibilidad

4.1.1. Locus *ga1*

La prueba de normalidad para probadores de incompatibilidad para los datos del locus ga1, resultó significativa para la variable MEDGR (promedio de cada tratamiento por el número de granos) y para la variable PORCGR (el porcentaje del llenado de grano en mazorca). Se realizaron transformaciones a los datos y sólo la variable MEDGR logró la normalidad mediante la transformación de la inversa del dato más uno (Y'=1/(Y+1)), con el valor de p de 0.0743 que no es significativa (Cuadro 8), misma que se denominó MEDGR- $^{INV+1}$.

Cuadro 8. Prueba de normalidad para probadores de incompatibilidad locus gal años 2007-2009.

Variable	N	Datos sin transformar	valor de <i>p</i>	Y =√(Y + 1)	valor de p	Y'=1/(Y+1)	valor de p
MEDGR	351	19.685	0.0000 **	16.231	0.0000 **	-1.785	0.0743 ns
PORCGR	351	19.595	0.0000 **	17.020	0.0000 **	-9.258	0.0000 **

Prueba de normalidad bajo procedimiento Univariate de SAS.

MEDGR= promedio de cada tratamiento por el número de granos; PORCGR= porcentaje del llenado de grano en mazorca: **= altamente significativo (p≤ 0.01); ns= no significativo-

El locus *ga1* fue evaluado por dos variables: MEDGR y PORCGR, variables tipo cuantitativo y cualitativo, respectivamente, ambas resultaron prácticas y confiables. La variable PORCGR presentó ventaja por la rapidez para la estimación de la presencia o ausencia de grano en la mazorca.

El análisis de varianza a través de años de siembra para el locus *ga1* presentó valores altamente significativos para las fuentes de variación probadores hembra (PH) y probadores macho (PM) (Cuadro 9), lo cual indica que el llenado de grano en mazorca de al menos un probador hembra fue diferente al resto, es decir, su discriminación y rechazo por parte de los estigmas hacia los probadores macho, al grano de polen sin factores de incompatibilidad de las variables MEDGR^{_INV+1} y PORCGR. Mientras NC354xW22P4830 y NC354xW22P5270 con alelo dominante *Ga1-S*, responsable de la incompatibilidad no-recíproca, presentaron barreras fuertes en sus estigmas y rechazaron el alelo *ga1* de los probadores macho, el probador hembra Hy1001xNC396 presentó llenados de grano por encima del 70%. Estos resultados causaron una respuesta diferenciada en la

interacción PH*PM en la variable PORCGR, no así para MEDGR^{-INV+1} en la que que no fue significativa esta interacción. Las fuentes de variación REP(AÑO), PH*AÑO, PM*AÑO y PH*PM*AÑO, en ambas variables, no presentaron diferencias. El coeficiente de variación para la variable MEDGR^{-INV+1} fue de 37.36% con un valor de R² de 0.802, mientras que la variable PORCGR presentó un coeficiente de variación de 268.87% debido principalmente a que las líneas Hy1001 y NC396, presentaron respuestas diferenciales en el llenado de grano en mazorca. Estos resultados indican que dichas líneas no presentan genes modificadores de la incompatibilidad que activan el efecto en el reconocimiento o rechazo de *Ga1-S* o de *Tcb1-S* (Nelson, 1953; Kermicle y Allen, 1990; Evans y Kermicle, 2001; Kermicle, 2006; De la Cruz *et al.*, 2008a y 2008b). Las fuentes de variación AÑO, PH*AÑO, PM*AÑO y PH*PM*AÑO no fueron significativas estadísticamente lo que indica que los diferentes probadores no son condicionados por el efecto de los años de siembra.

Cuadro 9. Cuadrados medios del análisis de varianza locus *ga1* de las variables MEDGR^{-INV+1} y PORCGR a través de años (2007 a 2009) y probadores macho recesivo en el campo experimental del CUCBA.

		MEDG	$\cdot \mathbf{R}^{-\mathrm{INV}+1}$	POR	CGR
FV	\mathbf{GL}	CM		CM	
REP	1	0.42464	*	27.50	*
PH	22	0.58691	**	118.61	**
PM	4	0.19089	**	27.35	**
PH*PM	88	0.03551	ns	9.71	**
AÑO	2	0.13498	ns	0.65	ns
REP(AÑO)	1	0.04426	ns	42.35	**
PH*AÑO	28	0.03713	ns	0.28	ns
PM*AÑO	5	0.06354	ns	0.55	ns
PH*PM*AÑO	61	0.05001	ns	0.61	ns
ERROR	138	0.04804		6.42	
TOTAL	350				
CV		37.36		268.87	
R^2		0.802		0.838	

Donde: MEDGR-^{INV+1}= promedio del número de granos por cada tratamiento (transformación inversa+1); PORCGR= porcentaje del número de granos por mazorca de cada tratamiento; FV= Fuente de variación; GL= grados de libertad; CM= Cuadrado medio; REP= repeticiones; PH= probador hembra; PM= probador macho; ns= no significativo; **= altamente significativo al 0.01 de probabilidad; *= significativo al 0.05 de probabilidad; CV=coeficiente de variación; R²= coeficiente de determinación.

Se realizó un ANVA excluyendo algunos híbridos donde participaron las líneas NC396 y Hy1001, materiales con presencia de altos llenados de grano (Cuadro 10), obteniéndose resultados similares, destacando que las fuentes de variación PM y PH*PM no fueron significativas para la variable

PORCGR a diferencia del resultado del ANVA del Cuadro 9 en que ambas son altamente significativas, y además para la variable MEDGR la fuente PM fue no significativa.

Cuadro 10. Cuadrados medios del análisis de varianza locus *ga1* para las variables MEDGR^{_INV+1} y PORCGR de los años 2007 a 2009, excluyendo algunos probadores hembra¹ en el campo experimental del CUCBA.

	Variable MEDGR_Inv+1						Variable PORCGR			
FV		GL	CM	Fc	Pr > F		CM	Fc	Pr > F	
REP		1	0.8323	16.87	<.0001	**	0.6937	4.64	0.0323 **	
PH		18	0.4351	8.82	<.0001	**	0.5802	3.88	<.0001 **	
PM		4	0.1069	2.17	0.074	ns	0.2643	1.77	0.1363 ns	
PH*PM		72	0.0390	0.79	0.878	ns	0.1737	1.16	0.2063 ns	
Error		207	0.0493				0.1494			
Total		302								
	CV		34.127				172.134			
	\mathbb{R}^2		0.542				0.453			

¹Probadores hembra eliminados: Hy1001xNC396; W22P4830xNC396; W22P5270xNC396; NC348xHy1001, con altos llenados de grano

Donde: MEDGR^{_INV+1}= promedio del número de granos por cada tratamiento (transformación inversa+1); PORCGR= porcentaje del número de granos por mazorca de cada tratamiento; FV= Fuente de variación; GL= grados de libertad; CM= Cuadrado medio; REP= repeticiones; PH= probador hembra; PM= probador macho; ns= no significativo; **= altamente significativo al 0.01 de probabilidad; CV=coeficiente de variación; R²= coeficiente de determinación.

Los promedios de los probadores hembra (excluyendo algunos híbridos donde participaron las líneas NC396 y Hy1001) son presentados en el Cuadro 11. En general las combinaciones de materiales tropical por templado, mantuvieron promedios del llenado de grano en mazorca cercanos al 0%.

Cuadro 11. Promedio del llenado de grano en mazorca de los probadores hembra¹ locus *ga1*, años 2007 a 2009.

			MEI	OGR	PORCGR		
No.	Probador hembra dominante	N	Promedio	Desv. Est.	Promedio	Desv. Est.	
1	W22P4830xNC296	21	0.280	0.423	0.061	0.093	
2	W22P5270xNC296	21	0.210	0.247	0.045	0.051	
3	Hy1001xNC296	21	1.306	0.916	0.257	0.173	
4	NC348xW22P4830	21	1.370	2.754	0.308	0.646	
5	NC348xW22P5270	21	2.151	2.799	0.395	0.493	
6	NC354xW22P4830	16	0.614	1.000	0.118	0.182	
7	NC354xW22P5270	16	0.313	0.338	0.053	0.054	
8	Hy1001xNC354	21	2.073	1.998	0.396	0.403	
9	W22P4830xNC452	12	0.486	0.234	0.091	0.045	
10	W22P5270xNC452	12	0.344	0.338	0.070	0.078	

			MEI	OGR	PORCGR		
No.	Probador hembra dominante		Promedio	Desv. Est.	Promedio	Desv. Est.	
11	NC452xHy1001	12	3.937	5.056	0.644	0.866	
12	W22P4830xNC462	21	0.363	0.378	0.071	0.076	
13	W22P5270xNC462	21	0.695	1.003	0.137	0.210	
14	Hy1001xNC462	21	3.820	6.092	0.651	0.934	
15	(NC462xNC354)xW22P4830	12	0.492	0.824	0.099	0.169	
16	(NC462xNC354)xW22P5270	12	0.436	0.464	0.094	0.089	
17	(NC462xNC354)xHy1001	12	1.614	1.034	0.289	0.205	
18	W22P4830xNC354	5	0.494	0.093	0.114	0.023	
19	W22P5270xNC354	5	0.640	0.699	0.108	0.121	
	Promedio general		1.14		0.21		

¹Probadores eliminados: Hy1001xNC396; W22P4830xNC396; W22P5270xNC396; NC348xHy1001.

Donde: MEDGR= promedio del número de granos por cada tratamiento; PORCGR= porcentaje del número de granos por mazorca de cada tratamiento; N= número de individuos; Desv. Est.= desviación estándar.

Los cinco probadores macho causaron promedios del llenado de grano cercanos al cero (Cuadro 12), destacando el material Garst-8327A con el menor promedio (0.208) y con buen comportamiento agronómico.

Cuadro 12. Promedio del llenado de grano en mazorca de los probadores macho para el locus *ga1*, años 2007 a 2009.

No.	Probador macho recesivo		MEI	DGR	PORCGR		
	Frobador macho recesivo	N	Promedio	Desv. Est.	Promedio	Desv. Est.	
1	DK-2010	43	1.018	2.095	0.255	0.555	
2	G-8327A	57	0.208	0.507	0.047	0.109	
3	H-8562A	41	0.615	1.566	0.134	0.323	
4	P-31G66	43	0.196	0.370	0.040	0.075	
5	P-32R21	58	1.643	4.693	0.319	0.833	
	Promedio gener	al	0.74	1.846	0.16	0.379	

Donde: MEDGR= promedio del número de granos por cada tratamiento; PORCGR= porcentaje del número de granos por mazorca de cada tratamiento; N= número de individuos; Desv. Est.= desviación estándar.

En el Cuadro 13 se observa que seis probadores (NC354xW22P4830, NC354xW22P5270, W22P4830xNC296, W22P5270xNC296, W22P4830xNC462 y W22P5270xNC462) presentaron valores de media, coeficiente de regresión y desviación de la regresión cercana al cero, en dos años consecutivos de evaluación, algunos probadores hembra que involucraron las líneas NC348, NC396 y Hy1001, presentaron llenados de grano en la mazorca diferentes a cero, con coeficientes de regresión mayores que cero y las desviaciones de regresion no fueron significativamente diferente a cero, estos fueron considerados como probadores hembra no estables (ver Cuadros 2A y 3A). Los

promedios generales del llenado de grano en la mazorca fueron de 9.16 y de 1.59 para los años 2007 y 2008 respectivamente (Cuadro 13). Acorde con los resultados reportados por De la Cruz *et al.* 2007 y 2008b los probadores hembra NC354xW22P4830 y NC354xW22P5270, y los encontrados en el presente trabajo NC348xW22P4830, NC348xW22P5270, fueron los que presentaron la barrera más fuerte de incompatibilidad y estabilidad.

Los análisis de varianza del modelo de regresión de Eberhart y Russell señalaron diferencias altamente significativas para las fuentes de variación Probadores hembra y para la interacción Probadores hembra por Probadores macho (Cuadros 2A y 3A), para los años 2007 y 2008.

.

Cuadro 13. Parámetros de estabilidad para probadores *Ga1-S/Ga1-S*, media (μ), coeficiente de regresión (β) y desviaciones de regresión (*S*²di) para el llenado de grano en mazorca del sistema de incompatibilidad *ga1* bajo el modelo de regresión de EBERHART y RUSSELL (1966), para 15 y 18 probadores hembra, años 2007 y 2008 respectivamente.

	1	AÑO :	2007 y 2006 lesp		AÑO 2008					
			COEFICIENTE	DESVIACIÓN				COEFICIENTE	DESVIACIÓN	
	PROBADOR HEMBRA	MEDIA	REGRESIÓN	REGRESIÓN		PROBADOR HEMBRA	MEDIA	REGRESIÓN	REGRESIÓN	
1	Hy1001xNC296	1.49	0.0519	0.1767	1	Hy1001xNC296	1.21	0.4944	0.4015	
2	Hy1001xNC354	1.54	0.0476	0.3264	2	Hy1001xNC354	2.40	1.6610	3.7567	
3	Hy1001xNC462	3.88	0.3655	3.4947	3	Hy1001xNC462	1.58	0.1580	0.0499	
4	NC348xHy1001	8.95	0.1596	25.8067	4	NC348xHy1001	11.37	10.8916 *	7.9244	
5	NC348xW22P4830	1.99	0.0386	8.7173	5	NC348xW22P4830	0.85	0.7477	0.0875	
6	NC348xW22P5270	1.00	0.1772	0.0341	6	NC348xW22P5270	2.44	-0.3289	12.5332	
7	NC354xW22P4830	0.90	-0.0324	0.4967	7	NC354xW22P4830	0.26	-0.0235	0.0048	
8	NC354xW22P5270	0.33	-0.0009	0.0593	8	NC354xW22P5270	0.43	-0.1569	0.0705	
9	W22P4830xNC296	0.26	0.0043	0.1750	9	W22P4830xNC296	0.27	-0.0233	0.0285	
10	W22P5270xNC296	0.21	-0.0141	0.0198	10	W22P5270xNC296	0.12	0.0254	0.0267	
11	W22P4830xNC462	0.37	0.0048	0.0385	11	W22P4830xNC462	0.35	0.0696	0.1190	
12	W22P5270xNC462	0.72	-0.1572	0.9235	12	W22P5270xNC462	0.73	0.5040	0.3517	
13	W22P4830xNC396	9.64	1.0849 *	9.8831	13	W22P4830xNC452	0.47	0.0733	0.0175	
14	W22P5270xNC396	9.20	1.7152 *	39.1956	14	W22P5270xNC452	0.32	0.1162	0.0747	
15	Hy1001xNC396	96.93	11.5549 *	47.2287	15	NC452xHy1001	3.38	3.4088 *	1.9353	
					16	(NC462xNC354)xW22P4830	0.46	0.0968	0.3609	
					17	(NC462xNC354)xW22P5270	0.35	-0.1252	0.0219	
					18	(NC462xNC354)xHy1001	1.70	0.4109	0.8268	
	Promedios	9.16					1.59			

^{* =} llenado de grano significativamente > cero (ver Cuadros 2A y 3A).

4.1.2. Locus *tcb1*

La prueba de normalidad para los datos del locus *tcb1*, resultó significativa para ambas variables en estudio: MEDGR y PORCGR. Se realizaron transformaciones a los datos y no se logró la normalidad (Cuadro 14), por lo que los análisis de varianza correspondientes se realizaron sin transformación alguna.

Cuadro 14. Prueba de Normalidad para probadores de incompatibilidad locus *tcb1* años 2007-2009.

Variable	N	Datos sin transformar	valor de <i>p</i>	$\mathbf{Y} = (\mathbf{Y} + 1)^2$	valor de <i>p</i>	Y'=1/(Y+1)	valor de p
MEDGR	253	15.622	0.0000 **	14.051	0.0000 **	-7.288	0.0000 **
PORCGR	253	15.007	0.0000 **	14.092	0.0000 **	-10.237	0.0000 **

Prueba de normalidad bajo procedimiento Univariate de SAS.

MEDGR= promedio de cada tratamiento por el número de granos; PORCGR= porcentaje del llenado de grano en mazorca.

El análisis de varianza de las variables MEDGR y PORCGR (Cuadro 15) reportó significancia para las fuentes PH, PM e interacción PH*PM. Este sistema de incompatibilidad tuvo mejor desempeño en el reconocimiento y rechazo de los estigmas al grano de polen recesivo con porcentajes cercanos al cero en la mayoría de los diferentes probadores hembra involucrados en el estudio. Las fuentes de variación REP, AÑO, REP DENTRO DE AÑO, PH*AÑO, PM*AÑO y PH*PM*AÑO no resultaron significativos en los tres años consecutivos de evaluación, indicando que los factores externos no alteran la respuesta o comportamiento de los genes en estudio y que la acción de los alelos de incompatibilidad del locus *tcb1*, son por efectos genéticos.

Cuadro 15. Cuadrados medios del análisis de varianza del locus *tcb1* de las variables MEDGR y PORCGR a través de años (2007 a 2009) y probadores macho (*tcb1/tcb1*) en el campo experimental CUCBA.

		MEI	OGR	POR	CGR
\mathbf{FV}	GL	CM		CM	
REP	1	6.52	ns	1.48	ns
PH	16	36281.47	**	1529.91	**
PM	4	855.70	**	20.95	**
PH*PM	57	791.99	**	30.55	**
AÑO	2	38.98	ns	1.25	ns
REP(AÑO)	1	3.80	ns	0.92	ns
PH*AÑO	20	16.31	ns	0.48	ns
PM*AÑO	5	14.76	ns	0.48	ns
PH*PM*AÑO	41	8.06	ns	0.26	ns
ERROR	105	87.85		4.86	
TOTAL	252				
CV		89.87		98.28	
R^2		0.987		0.983	

Donde: MEDGR= promedio del número de granos por cada tratamiento; PORCGR= porcentaje del número de granos por mazorca de cada tratamiento; FV= Fuente de variación; GL= grados de libertad; CM= Cuadrado medio; REP= repeticiones; PH= probador hembra; PM= probador macho; ns= no significativo; **= altamente significativo al 0.01 de probabilidad; *= significativo al 0.05 de probabilidad.

Para el locus *tcb1*, las fuentes de germoplasma de orígenes templados W22-TIC-1.1 y W22-TIC-1.5, utilizados como progenitores masculinos y en combinación con germoplasma adaptado como la línea LUG03, mostraron una fuerte barrera genética, fueron los probadores más consistentes.

El ANVA del Cuadro 16 se realizó excluyendo algunos híbridos donde participaron las líneas W22-TIC-1.7 y LUG379, materiales con alto llenado de grano en mazorca, obteniendo como resultando con ambas variables para la fuente PH*PM como no significativa, a diferencia del resultado del ANVA en el Cuadro 15.

Cuadro 16. Cuadrados medios del análisis de varianza locus *tcb1* variables MEDGR^{-INV+1} y PORCGR de los años 2007 a 2009 excluyendo probadores hembra¹ con altos llenados de grano en el campo experimental del CUCBA.

		Variable M	EDGR_	_Inv+1		Variable POR	CGR		
FV	\mathbf{GL}	CM	Fc	Pr > F		CM	Fc	Pr > F	
REP	1	0.0595	0.01	0.918	ns	0.0167	0.09	0.768	ns
PH	13	17.8826	3.23	0.000	**	0.8391	4.41	<.0001	**
PM	4	21.9770	3.97	0.004	**	0.8495	4.46	0.002	**
PH*PM	51	6.7598	1.22	0.174	ns	0.2585	1.36	0.077	ns
Error	172	5.5387				0.1905			
Total	241								
CV		308.507				268.276			
\mathbb{R}^2		0.418				0.461			

¹Probadores eliminados: LUG03xW22-TIC1.7; LUG14xW22-TIC1.7; LUG379xW22-TIC1.1.

Donde: MEDGR^{_INV+1}= promedio del número de granos por cada tratamiento (transformación inversa+1); PORCGR= porcentaje del número de granos por mazorca de cada tratamiento; FV= Fuente de variación; GL= grados de libertad; CM= Cuadrado medio; REP= repeticiones; PH= probador hembra; PM= probador macho; ns= no significativo; **= altamente significativo al 0.01 de probabilidad; CV=coeficiente de variación; R²= coeficiente de determinación.

Los promedios de los probadores hembra, excluyendo algunos híbridos donde participaron las líneas W22-TIC1.7 y LUG379, son presentados en el Cuadro 17. En general dichos probadores mostraron promedios del llenado de grano en mazorca cercanos al 0%, con excepción donde participaron las líneas LUG357 y LUG21.

Cuadro 17. Promedio del llenado de grano en mazorca de los probadores hembra¹ locus *tcb1*, años 2007 a 2009.

			MEI	DGR	PORCGR		
No.	Probador hembra dominante	N	Promedio	Desv. Est.	Promedio	Desv. Est.	
1	LUG03xW22-TIC-1.1	22	0.041	0.091	0.008	0.017	
2	LUG03xW22-TIC-1.5	22	0.059	0.171	0.010	0.030	
3	LUG14xW22-TIC-1.1	22	0.130	0.300	0.026	0.055	
4	LUG14xW22-TIC-1.5	22	0.094	0.123	0.030	0.044	
5	LUG282xW22-TIC-1.1	22	0.014	0.064	0.002	0.011	
6	LUG282xW22-TIC-1.5	20	0.055	0.224	0.012	0.047	
7	LUG357xW22-TIC-1.1	22	2.609	3.189	0.546	0.655	
8	LUG357xW22-TIC-1.5	22	2.144	3.427	0.502	0.775	
9	LUG21xW22-TIC-1.1	12	1.900	2.161	0.463	0.501	
10	LUG21xW22-TIC-1.5	8	1.106	1.282	0.231	0.270	
11	LUGS17LxW22-TIC-1.1	12	0.100	0.200	0.025	0.048	

N.T.		N		DGR	PORCGR		
No.	Probador hembra dominante		Promedio	Desv. Est.	Promedio	Desv. Est.	
12	LUGS17LxW22-TIC-1.5	12	0.075	0.142	0.023	0.041	
13	(MILLG9BxP87C5)xW22-TIC1.1	12	2.810	8.780	0.478	1.479	
14	(MILLG9BxP87C5)xW22-TIC1.5	12	0.338	0.413	0.058	0.072	
	Promedio	Promedio		1.469	0.17	0.289	

Probadores eliminados: LUG03xW22-TIC1.7; LUG14xW22-TIC1.7; LUG379xW22-TIC1.1.

Donde: MEDGR= promedio del número de granos por cada tratamiento; PORCGR= porcentaje del número de granos por mazorca de cada tratamiento; N= número de individuos; Desv. Est.= desviación estándar.

De acuerdo a los resultados del Cuadro 29, los cinco híbridos comerciales: DK-2010, Garst-8327A, H-8562A, P-31G66, P-32R21 fueron caracterizados genotípicamente *tcb1/tcb1*. El probador macho Garst-8327A causó los menores promedios de llenado de grano en mazorca en ambas variables (Cuadro 18).

Cuadro 18. Promedios del llenado de grano en mazorca de los probadores macho para el locus *tcb1*, años 2007 a 2009.

			ME	DGR	PORCGR		
No.	Probador macho recesivo	N	Promedio	Desv. Est.	Promedio	Desv. Est.	
1	DK-2010	43	1.018	2.095	0.255	0.555	
2	G-8327A	57	0.208	0.507	0.047	0.109	
3	H-8562A	41	0.615	1.566	0.134	0.323	
4	P-31G66	43	0.196	0.370	0.040	0.075	
_ 5	P-32R21	58	1.643	4.693	0.319	0.833	
	Promedio		0.74	1.846	0.16	0.379	

Donde: MEDGR= promedio del número de granos por cada tratamiento; PORCGR= porcentaje del número de granos por mazorca de cada tratamiento; N= número de individuos; Desv. Est.= desviación estándar.

El análisis de parámetros de estabilidad adaptando el modelo de regresión de Eberhart y Russell (1966) se realizó con sólo dos años consecutivos para la elección de los probadores más estables y consistentes respecto a las barreras de incompatibilidad. El Cuadro 19 presenta los probadores LUG03xW22-TIC-1.1, LUG03xW22-TIC-1.5, LUG14xW22-TIC-1.1, LUG14xW22-TIC-1.5, LUG282xW22-TIC-1.1, LUG282xW22-TIC-1.5, LUGS17xW22-TIC-1.1 y LUGS17xW22-TIC-1.5 con los valores de media, coeficiente de regresión y desviación de la regresión más cercanos al cero. En el año 2008 se incluyeron otros dos probadores hembra (M-ILL-G9BxP87C5)xW22-TIC-1.1 y (M-ILL-G9BxP87C5)xW22-TIC-1.5; el resto de los probadores del estudio presentaron valores de llenado de grano en mazorca inferiores al 4% y con coeficientes de regresión del 0 al 5% y desviaciones de regresión cercanas al cero. Las cruzas en que participaron las líneas LUG21 y

LUG357 mostraron coeficientes de regresión significativamente diferentes a cero (Cuadros 4A y 5A) con promedios de llenado de grano diferentes a cero, y la desviación de regresión igual a cero. Se consideraron líneas no deseables.

Los promedios generales del llenado de grano en mazorca fueron de 0.86 para el año 2007 y de 0.40 para el año 2008 (Cuadro 19). Los probadores con el alelo *Tcb1-S* presentaron las barreras más fuertes y con mayor capacidad discriminatoria y de rechazo del grano de polen de los probadores macho sin factores de incompatibilidad.

Los probadores hembra dominantes (M-ILL-G9BxP87C5)xW22-TIC-1.1 y (M-ILL-G9BxP87C5)xW22-TIC-1.5, a pesar de presentar buenos datos en las evaluaciones, cuando fueron sometidos sus estigmas con materiales a prueba de amplia base genética como lo fueron las razas de maíz, presentaron una débil a nula reacción de rechazo y discriminación del polen proveniente de las razas Mexicanas y Sudamericanas (Cuadros 34 y 41).

El análisis de varianza del modelo de regresión de Eberhart y Russell para el locus *tcb1* en probadores de la incompatibilidad, señaló diferencias altamente significativas para la fuente de variación Probadores hembra y para la interacción Probadores hembra por Probadores macho, no así para la fuente Desviación conjunta (Cuadros 4A y 5A), para ambos años (2007 y 2008).

Cuadro 19. Parámetros de estabilidad para probadores Tcb1-S/-, media (μ), coeficiente de regresión (β) y desviaciones de regresión (S^2 di) para el llenado de grano en mazorca del sistema de incompatibilidad tcb1 bajo el modelo de regresión de EBERHART y RUSSELL (1966), para 8 y 14 probadores hembra, años 2007 y 2008 respectivamente.

	AÑO 2	007		AÑO-2008						
		COEFICIENTE	DESVIACIÓN				COEFICIENTE	DESVIACIÓN		
PROBADOR HEMBRA	MEDIA	REGRESIÓN	REGRESIÓN		PROBADOR HEMBRA	MEDIA	REGRESIÓN	REGRESIÓN		
1 LUG03xW22-TIC-1.1	0.07	-0.1192	0.0035	1	LUG03xW22-TIC-1.1	0.04	0.0553	0.0032		
2 LUG03xW22-TIC-1.5	0.11	0.0584	0.0318	2	LUG03xW22-TIC-1.5	0.02	-0.0563	0.0022		
3 LUG14xW22-TIC-1.1	0.23	-0.0389	0.1084	3	LUG14xW22-TIC-1.1	0.04	0.0103	0.0107		
4 LUG14xW22-TIC-1.5	0.08	-0.0509	0.0010	4	LUG14xW22-TIC-1.5	0.09	-0.0265	0.0206		
5 LUG282xW22-TIC-1.1	0.03	-0.0447	0.0047	5	LUG282xW22-TIC-1.1	0.00	0.0000	0.0000		
6 LUG282xW22-TIC-1.5	0.11	0.2630	0.0194	6	LUG282xW22-TIC-1.5	0.00	0.0000	0.0000		
7 LUG357xW22-TIC-1.1	3.79	4.0458 *	0.7042	7	LUG357xW22-TIC-1.1	1.12	1.4760	0.8224		
8 LUG357xW22-TIC-1.5	2.45	3.8866 *	1.1220	8	LUG357xW22-TIC-1.5	1.03	4.9503 *	0.2367		
				9	LUG21xW22-TIC-1.1	1.90	5.1194 *	0.4333		
				10	LUG21xW22-TIC-1.5	0.73	2.6868 *	0.5372		
				11	LUGS17xW22-TIC-1.1	0.00	0.0000	0.0000		
				12	LUGS17xW22-TIC-1.5	0.05	-0.0858	0.0055		
				13	(M-ILL-G9BxP87C5)xW22-TIC-1.	1 0.27	-0.4038	0.0510		
				14	(M-ILL-G9BxP87C5)xW22-TIC-1.	5 0.33	0.2742	0.0478		
Promedios	0.86					0.40				

Promedios 0.86 0.40

^{* =} llenado de grano significativamente > cero (ver Cuadros 4A y 5A).

En el Cuadro 20 se presentan valores del llenado de grano en mazorca de los probadores hembra evaluados con libre polinización (PL's), realizado durante el año 2009, a efecto de conocer el comportamiento del llenado de grano en mazorca bajo libre polinización (PL's). Se observó el mejor llenado de grano en mazorca de los probadores con el locus *ga1* con 97.1%, mientras que el menor llenado de grano en mazorca con 77.5% fue para probadores con el locus *tcb1*.

Cuadro 20. Porcentajes del llenado de grano en mazorca de probadores con libre polinización (PL's), año 2009 en los campos experimentales del CUCBA.

CENEAL OCÉA	A1 1	Número mzc	Mzc PL's
GENEALOGÍA	Alelo	PL's	(%)
W22P4830 x NC296	Ga1-S/Ga1-S	24	98.8
W22P5270 x NC296	Gal-S/Gal-S	29	87.9
Hy1001 x NC296	Ga1-S/Ga1-S	26	98.8
NC348 x W22P4830	Ga1-S/Ga1-S	28	97.9
NC348 x W22P5270	Ga1-S/Ga1-S	30	92.0
NC348 x Hy1001	Gal-S/Gal-S	24	100.0
NC354 x W22P4830	Ga1-S/Ga1-S	19	100.0
NC354 x W22P5270	Gal-S/Gal-S	20	98.0
Hy1001 x NC354	Gal-S/Gal-S	20	99.0
W22P4830 x NC452	Ga1-S/Ga1-S	24	96.7
W22P5270 x NC452	Ga1-S/Ga1-S	22	99.1
NC452 x Hy1001	Ga1-S/Ga1-S	20	100.0
W22P4830 x NC462	Ga1-S/Ga1-S	25	94.0
W22P5270 x NC462	Ga1-S/Ga1-S	27	92.6
Hy1001 x NC462	Ga1-S/Ga1-S	21	100.0
W22P4830 x (NC462xNC354)	Ga1-S/Ga1-S	17	98.2
W22P5270 x (NC462xNC354)	Ga1-S/Ga1-S	20	97.0
Hy1001 x (NC462xNC354)	Ga1-S/Ga1-S	20	98.0
Porcentaje de llenado de grano en mazorca			97.1
LUG03 x W22-TIC-1.1	Tcb1-S/-	21	36.2
LUG03 x W22-TIC-1.1 LUG03 x W22-TIC-1.5	Tcb1-S/-	32	45.9
LUG14 x W22-TIC-1.1	Tcb1-S/-	19	65.8
LUG14 x W22-TIC-1.1 LUG14 x W22-TIC-1.5	Tcb1-S/-	18	79.4
LUG282x W22-TIC-1.1	Tcb1-S/-	18	74.2
LUG282 x W22-TIC-1.1 LUG282 x W22-TIC-1.5	Tcb1-S/-	23	68.7
LUG357 x W22-TIC-1.1	Tcb1-S/-	17	91.2
LUG357 x W22-TIC-1.5	Tcb1-S/-	17	89.4
LUG21 x W22-TIC-1.1	Tcb1-S/-	20	81.0
LUG21 x W22-TIC-1.1 LUG21 x W22-TIC-1.5	Tcb1-S/-	33	100.0
LUGS17L x W22-TIC-1.1	Tcb1-S/-	21	85.7
LUGS17L x W22-TIC-1.5	Tcb1-S/-	22	66.8
(M-ILL-G9BxP87C5)xW22-TIC-1.1	Tcb1-S/-	19	88.4
(M-ILL-G9BxP87C5)xW22-TIC-1.5	Tcb1-S/-	21	95.7
LUG379 xW22-TIC-1.1	Tcb1-S/-	19	94.7
Porcentaje de llenado de grano en mazorca	1001 0		77.5
•			

GENEALOGÍA	Alelo	Número mzc PL's	Mzc PL's (%)
(NC462xNC354)xW22-TIC-1.1	Ga1-S y Tcb1-S	20	88.0
NC296 x W22-TIC-1.1	Ga1-S y Tcb1-S	35	87.1
NC348 x W22-TIC-1.1	Ga1-S y Tcb1-S	26	93.8
NC354 x W22-TIC-1.1	Ga1-S y Tcb1-S	23	81.7
NC396 x W22-TIC-1.1	Ga1-S y Tcb1-S	20	84.5
NC452 x W22-TIC-1.1	Ga1-S y Tcb1-S	18	82.2
NC462 x W22-TIC-1.1	Ga1-S y Tcb1-S	21	76.7
Porcentaje de llenado de grano en mazorca			84.9
LUG03 x W22-Ga2	Ga1-m y Ga2	23	82.6
LUG21 x W22-Ga2	Ga1-m y Ga2	19	98.4
LUG282 x W22-Ga2	Ga1-m y Ga2	25	82.8
LUG357 x W22-Ga2	Ga1-m y Ga2	18	95.6
LUG379 x W22-Ga2	ga1 y Ga2	22	98.6
LUGS17L x W22-Ga2	ga1 y Ga2	33	87.9
Porcentaje de llenado de grano en mazorca			91.0
LUG14 x W22	ga1/ga1	21	81.0
LUG379 x W22	ga1/ga1	20	95.0
LUGS17L x W22	ga1/ga1	23	93.0
Porcentaje de llenado de grano en mazorca			89.7

Donde: Número mzc PL's= número total de mazorcas cosechadas por tratamiento en libre polinización; Mzc PL's (%)=valores en porcentaje del llenado de grano en mazorca de los probadores hembra evaluados con polinización libre

El comportamiento de llenado de grano en mazorca con factores de incompatibilidad, presentaron resultados en el llenado de grano semejantes a los resultados de los experimentos en forma controlada. Por ejemplo, el sistema de incompatibilidad *ga1*, presentó mejor promedio en el llenado de grano en mazorca con libre polinización, mientras que el sistema de incompatibilidad *tcb1*, presentó menores porcentajes de llenado, resaltando los cruzamientos de la línea LUG03xW22-TIC-1.1 y LUG03xW22-TIC-1.5, con 36.2 y 45.9% de granos, respectivamente, siendo el locus que presenta cierto grado de auto-incompatibilidad. Los promedios de llenado de grano en mazorcas tanto de la muestra como del total de mazorcas cosechadas mostraron resultados similares. En resumen, estos datos dan una idea del comportamiento *per se* de los alelos de incompatibilidad en su estado natural en las poblaciones de maíz.

4.2. Híbridos comerciales

Las pruebas de normalidad señalaron que solamente los datos obtenidos con el probador homocigote *Ga1-S*, logró presentar la normalidad de los datos con valor no significativo de 0.0762 (Cuadro 21).

Cuadro 21. Pruebas de normalidad de los datos de campo y transformaciones en los híbridos comerciales de los sistemas de incompatibilidad *ga1* y *tcb1*.

Probador	N	Datos sin transformar	valor de p	$Y=\sqrt{(Y+1)}$	valor de p	Y'=1/(Y+1)	valor de p
gal	922	-29.705	0.0000 **	-35.137	0.0000 **	-34.265	0.0000 **
Ga1-S	489	-1.773	0.0762 ns	-3.822	0.0001 **	-3.483	0.0005 **
Tcb1-S	200	15.962	0.0000 **	15.230	0.0000 **	-13.946	0.0000 **

Con la prueba no-paramétrica NPAR1WAY se descartó al análisis de varianza por ser de una vía y no aportar información de las posibles interacciones entre las fuentes de variación.

4.2.1. Locus *ga1*

El análisis de varianza (ANVA) realizado en los híbridos comerciales de maíz para instituciones del sector público y empresas del sector privado, tanto nacionales como internacionales, con probadores recesivos (sin factores de incompatibilidad) presentaron diferencias altamente significativas para la fuente de variación Institución/Empresa (Cuadro 22). La fuente de variación Accesión dentro de Institución/Empresa presentó diferencias altamente significativas (Cuadro 22). La fuente de variación Accesión dentro de Institución o Empresa no presentó diferencias significativas con el probador recesivo, con un coeficiente de variación aceptable de 6.58%. El ANVA para el probador hembra dominante (*Ga1-S/Ga1-S*), mostró diferencias altamente significativos para Institución o Empresa, y para Accesiones dentro de Institución/Empresa, con un coeficiente de 23.4% y un valor de R² de 0.958.

Cuadro 22. Cuadrados medios del análisis de varianza del sistema de incompatibilidad *ga1* en híbridos de maíz de Instituciones y Empresas para probador macho recesivo y probador hembra dominante, durante los años 2005 a 2009 en los campos experimentales del CUCBA.

FV	Probador macho recesivo ga1/ga1				Probador hembra dominante Ga1-S /Ga1-S				
	GL	CM	Pr > F		GL	CM	Pr > F	•	
Institución/Empresa	40	209.168	<.0001	**	40	7725.599	<.0001	**	
Accesión(Institución/Empresa)	196	35.519	0.9228	ns	196	3009.105	<.0001	**	
Error	685	42.032			252	158.509			
Total	921				488				
CV		6.58				23.37			
R^2		0.348				0.958			

Donde: FV= Fuente de variación; GL= grados de libertad; CM= Cuadrado medio; ns= no significativo; **= altamente significativo al 0.01 de probabilidad; CV=coeficiente de variación; R²= coeficiente de determinación.

El Cuadro 23 muestra los promedios de la prueba de Dunnett al 0.05 para la variable llenado de grano en mazorca y el Cuadro 24 muestra los promedio del llenado de grano en mazorca, obtenidos por cada una de las instituciones del sector público y empresas del sector privado con los probadores homocigotos *ga1* y *Ga1-S*, los promedios obtenidos reflejan la constitución genotípica con respecto a los factores de incompatibilidad.

La fuente de variación Institución o Empresa el ANVA presentó diferencias altamente significativas, por lo que existe variación en cuanto al llenado de grano en los materiales evaluados entre Instituciones o Empresas.

Cuadro 23. Promedios de llenado de grano en mazorca de los híbridos comerciales con probadores macho recesivo y hembras dominantes (*Ga1-S* y *Tcb1-S*) y prueba de Dunnett al 0.05 de probabilidad.

		Probador macho r (ga1/ga1, tcb1/t				nbra dominante S/Ga1S)		Probador hembra dominante (Tcb1-S/-)		
		(100% grano)		(0% grano)		(100% grano)		(0% grano)		
No.	Instituciones	Dif. entre Medias	p	Dif. entre Medias	p	Dif. entre Media	s p	Dif. entre Medias	p	
1	AGROSIMI	-2.6429	ns	93.03	*	-6.97	ns	0.0	ns	
2	AGROZENAY	-4.1675	ns	50.0	*	-50.0	*	0.0	ns	
3	AGRYVEN S. DE R.	-2.0833	ns	40.667	*	-59.333	*	0.0	ns	
4	ASPROS (Testigo)	-1.2444	ns	100.0	*	<u>100.0</u>	-	16.439	ns	
5	CALORO	-24.105	*	90.0	*	-10.0	ns	0.0	ns	
6	CERES	-0.6466	ns	78.268	*	-21.732	*	4.839	ns	
7	CIMMYT	-0.4872	ns	53.167	*	-46.833	*	5.816	ns	
8	CONLEE	-3.8788	ns	87.292	*	-12.708	ns	1.667	ns	
9	CRISTIANI BURKARD	0.0	ns	91.667	*	-8.333	ns	0.0	ns	
10	DAS	0.0	ns	50.0	*	-50.0	*	0.0	ns	
11	DESCONOCIDO	0.0	ns	0.0	ns	-100.0	*	0.0	ns	
12	DOW	-4.25	ns	95.5	*	-4.5	ns	9.0	ns	
13	EAGLE	0.0	ns	73.5	*	-26.5	*	8.875	ns	
14	EL CAMINO	-4.2777	ns	2.5	ns	-97.5	*	0.0	ns	
15	GARST (Testigo)	0.0	ns	0.0	-	-100.0	*	0.0	ns	
16	GENSEM	0.0	ns	53.333	*	-46.667	*	0.0	ns	
17	GOLDEN HARVEST	-0.2222	ns	0.0	ns	-100.0	*	1.096	ns	
18	HARTZ	-0.6667	ns	52.571	*	-47.429	*	7.625	ns	
19	ICAMEX	-4.2857	ns	98.0	*	-2.0	ns	20.617	ns	
20	INIFAP	0.0	ns	43.333	*	-56.667	*	0.0	ns	
21	INIFAP??	-6.3333	ns	67.5	*	-32.5	*	0.0	ns	
22	INIFAP-IGUALA	-1.0668	ns	6.0	ns	-94.0	*	0.0	ns	
23	INIFAP-JALISCO	-0.2105	ns	65.529	*	-34.471	*	0.0	ns	
24	INIFAP-V-ALTOS	-4.78	ns	96.667	*	-3.333	ns	19.75	ns	
				51						

Cuadro 23. Continuación...

		Probador macho r (ga1/ga1, tcb1/to				nbra dominante S/Ga1S)		Probador hembra dominar (Tcb1-S/-)	nte
		(100% grano)		(0% grano)		(100% grano)		(0% grano)	
No.	Instituciones	Dif. entre Medias	p	Dif. entre Medias	p	Dif. entre Medias	p	Dif. entre Medias	p
25	JAIME CAMACHO	0.0	ns	20.0	ns	-80.0	*	0.0	ns
26	MAX SEED	-6.6667	ns	36.833	*	-63.167	*	0.0	ns
27	MONSANTO	-0.8966	ns	68.131	*	-31.869	*	4.907	ns
28	NOVASEM	0.0	ns	76.833	*	-23.167	*	0.0	ns
29	PIONEER	-1.5928	ns	35.961	*	-64.039	*	0.543	ns
30	SEMILLAS AMANECER	-1.5385	ns	59.584	*	-40.416	*	0.418	ns
31	SEMILLAS BERENTZ	-5.3333	ns	67.5	*	-32.5	*	3.333	ns
32	SEMILLAS MAX	0.0	ns	20.0	ns	-80.0	*	0.0	ns
33	SEMILLAS RICA	0.0	ns	34.636	*	-65.364	*	0.0	ns
34	SEMILLAS-ALSA	0.0	ns	93.75	*	-6.25	ns	0.0	ns
35	SYNGENTA	-1.1	ns	25.0	*	-75.0	*	0.0	ns
36	TAYLOR	0.0	ns	5.555	ns	-94.445	*	0.0	ns
37	TROPICO SEEDS	0.0	ns	65.0	*	-35.0	*	0.0	ns
38	UDEG (Testigo)	<u>100.0</u>	-	55.42.9	*	-44.571	*	<u>0.0</u>	-
39	UNISEM	0.0	ns	17.667	ns	-82.333	*	0.0	ns
40	VÍTA 755	-50	*	20.0	ns	-80.0	*	-	-
41	ZARCO	0.0	ns	87.5	*	-12.5	ns	0.0	ns
* = 0	comparaciones significativas al nivel 0.05								
	GL error	685		252		252		45	
	CM error	42.032	,	158.509		158.509		424.188	
	Valor Critico de Dunnett	3.088		3.110		3.181		3.129	054

La comparación de medias con base a la prueba de Dunnett al 0.05 de probabilidad con respecto al probador homocigoto recesivo *ga1*, de las instituciones UDEG e INIFAP, para el control del 100% de llenado de grano en mazorca con valores críticos de Dunnett de 3.08 y 3.07, respectivamente, y presentó como altamente significativos a CALORO y VITA 755 con 75.9% y 50% del llenado de grano en mazorca (Cuadro 23).

A continuación se presentan los promedios de los híbridos comerciales con el probador macho recesivo y el probador hembra dominante (*Ga1-S/Ga1-S*) de los alelos detectados para cada material evaluado (Cuadro 24).

Cuadro 24. Propuesta de la constitución genotípica del sistema de incompatibilidad *ga1*, para híbridos comerciales de instituciones públicas y empresas privadas, años 2005 a 2009 en los campos experimentales del CUCBA.

No.	Institución/Empresa	Institución/Empresa Accesión ¹		Promedios probador hembra dominante‡			Genotipo propuesto
140.		Accesion	(ga1/ga1 tcb1/tcb1)	NC354 x W22P4830	NC354 x W22P5270	Promedio (Ga1-S/Ga1-S)	Genotipo propuesto
1	AGROSIMI-701	AGROSIMI	90.5	80.0	100.0	90.0	Ga1-m/Ga1-m
2	AGROSIMI-705	AGROSIMI	100.0	90.9	100.0	95.5	Ga1-m/Ga1-m
3	AGROSIMI-709A	AGROSIMI	100.0	100.0		100.0	Ga1-m/Ga1-m
4	AGROSIMI-710A	AGROSIMI	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
5	AGROSIMI-728A	AGROSIMI	100.0	60.0	100.0	80.0	Ga1-m/ga1
6	M-629	AGROZENAY	91.7	100.0		100.0	Ga1-m/Ga1-m
7	M-630	AGROZENAY	100.0	0.0		0.0	ga1/ga1
8	AV-31	AGRYVEN S. DE R.L.	100.0	2.0		2.0	ga1/ga1
9	AV-42	AGRYVEN S. DE R.L.	100.0	2.0		2.0	ga1/ga1
10	AV-51	AGRYVEN S. DE R.L.	87.5	80.0		80.0	Ga1-m/Ga1-m
11	AV-62	AGRYVEN S. DE R.L.	100.0	60.0		60.0	Ga1-m/ga1
12	AV-71	AGRYVEN S. DE R.L.	100.0	60.0		60.0	Ga1-m/ga1
13	AV-Z	AGRYVEN S. DE R.L.	100.0	40.0		40.0	Ga1-m/ga1
14	AS-1501	ASPROS	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
15	AS-721	ASPROS	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
16	AS-722	ASPROS	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
17	AS-820	ASPROS	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
18	AS-902	ASPROS	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
19	ELOTERO-3311	CALORO	92.0	100.0	80.0	90.0	Ga1-m/Ga1-m

 $^{^{1}}$ ID cultivar comercial; ‡ = Promedios de porcentajes;

No.	Institución/Empresa	Institución/Empresa Accesión ¹		Promedios probador hembra dominante;			Genotipo propuesto
	·	Institution/Empresa	(ga1/ga1 tcb1/tcb1)	NC354 x W22P4830	NC354 x W22P5270	Promedio (Ga1-S/Ga1-S)	The second second
20	CICLON-XR	CERES	100.0	80.0	40.0	60.0	Ga1-m/ga1
21	CME-560	CERES	92.0	37.0	55.0	46.0	Ga1-m/ga1
22	CME-561	CERES	100.0	26.4	92.0	59.2	Ga1-m/ga1
23	FUEGO	CERES	100.0	100.0	90.0	95.0	Ga1-m/Ga1-m
24	FUEGO-XR	CERES	100.0	100.0	76.0	88.0	Ga1-m/Ga1-m
25	NIEBLA	CERES	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
26	TORNADO	CERES	100.0	100.0	76.0	88.0	Ga1-m/Ga1-m
27	TORNADO-XR	CERES	100.0	84.0	80.0	82.0	Ga1-m/Ga1-m
28	TORNADO-XR2	CERES	100.0	84.0	94.0	89.0	Ga1-m/Ga1-m
29	XR-20A	CERES	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
30	XR-45	CERES	100.0	80.0	92.0	86.0	Ga1-m/Ga1-m
31	(464X175)XBTZ	CIMMYT	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
32	B236X(239XGWIC)	CIMMYT	100.0	20.0	40.0	30.0	Ga1-m/ga1
33	CL-4368XCL-SPLW04	CIMMYT	100.0	66.0	75.0	70.5	Ga1-m/ga1
34	CLQ-RCWQ10XCML491	CIMMYT	100.0	0.0	0.0	0.0	ga1/ga1
35	CML142XCML186	CIMMYT	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
36	CML144XCML159	CIMMYT	100.0	0.0	0.0	0.0	ga1/ga1
37	CML175XCML176	CIMMYT	100.0	100.0	92.0	96.0	Ga1-m/Ga1-m
38	CML244XCML349	CIMMYT	100.0	84.0	100.0	92.0	Ga1-m/Ga1-m
39	CML246XCML242	CIMMYT	100.0	80.0	90.0	85.0	Ga1-m/Ga1-m
40	CML247XCML254	CIMMYT	100.0	0.0	0.0	0.0	ga1/ga1
41	CML491XCML176	CIMMYT	100.0	0.0	0.0	0.0	ga1/ga1
42	CML491XCML503	CIMMYT	100.0	0.0	0.0	0.0	ga1/ga1

No.	Institución/Empresa	Institución/Empresa Accesión ¹		Promedios p	Promedios probador hembra dominante‡		
1,00		Histitucion/Empresa Accessor	(ga1/ga1 tcb1/tcb1)	NC354 x W22P4830	NC354 x W22P5270	Promedio (Ga1-S/Ga1-S)	Genotipo propuesto
43	CML494XCML495	CIMMYT	100.0	0.0	0.0	0.0	ga1/ga1
44	CML78XCML373	CIMMYT	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
45	MESAMLINILLXG9B	CIMMYT	100.0	75.0	100.0	87.5	Ga1-m/ga1
46	P501XP502	CIMMYT	100.0	100.0	92.5	96.3	Ga1-m/Ga1-m
47	AG-3301	CONLEE	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
48	CONLEE-MATADOR	CONLEE	93.3	78.0	92.0	85.0	Ga1-m/Ga1-m
49	CONLEE-MILENIO	CONLEE	86.7	72.0	72.0	72.0	Ga1-m/ga1
50	CONLEE-RANCHERO	CONLEE	88.0	66.7	80.0	73.3	Ga1-m/ga1
51	DON-ABEL	CONLEE	100.0	80.0	100.0	90.0	Ga1-m/Ga1-m
52	H-024505_CAZADOR	CONLEE	100.0	84.0	84.0	84.0	Ga1-m/Ga1-m
53	SCM-2801_VAQUERO	CONLEE	96.0	100.0	94.0	97.0	Ga1-m/Ga1-m
54	CRISTIANI-CRM-50	CRISTIANI BURKARD	100.0	75.0	100.0	87.5	Ga1-m/ga1
55	CRISTIANI-CRM-51	CRISTIANI BURKARD	100.0	75.0	100.0	87.5	Ga1-m/ga1
56	HMX3	CRISTIANI BURKARD	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
57	DAS-2301	DAS	100.0	0.0	0.0	0.0	ga1/ga1
58	DAS-2348	DAS	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
59	F-5721A	DESCONOCIDO	100.0	0.0	0.0	0.0	ga1/ga1
60	DOW-2A120	DOW	100.0	100.0	82.0	91.0	Ga1-m/Ga1-m
61	DOW-2B150	DOW	91.5	100.0	100.0	100.0	Ga1-m/Ga1-m
62	E-205B	EAGLE	100.0	96.0	100.0	98.0	Ga1-m/Ga1-m
63	E-213B	EAGLE	100.0	100.0	92.0	96.0	Ga1-m/Ga1-m
64	E-214S-B	EAGLE	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
65	E-300A	EAGLE	100.0	0.0	0.0	0.0	ga1/ga1

No.	. Institución/Empresa Accesión ¹	Accesión ¹	Promedios probador macho recesivo‡	Promedios p	orobador hemb	ra dominante‡	Genotipo propuesto
1,00		Histitucion/Empresa Accessor	(ga1/ga1 tcb1/tcb1)	NC354 x W22P4830	NC354 x W22P5270	Promedio (Ga1-S/Ga1-S)	Concupo propuesto
66	ELC-130A	EL CAMINO	75.4	0.0	0.0	0.0	ga1/ga1
67	ELC-172A	EL CAMINO	100.0	0.0	0.0	0.0	ga1/ga1
68	ELC-179A	EL CAMINO	100.0	25.0	0.0	12.5	Ga1-m/ga1
69	ELC-182A	EL CAMINO	100.0	0.0	0.0	0.0	ga1/ga1
70	ELC-189	EL CAMINO	100.0	0.0	0.0	0.0	ga1/ga1
71	G-8278B	GARST	100.0	0.0	0.0	0.0	ga1/ga1
72	G-8327A	GARST	100.0	0.0	0.0	0.0	ga1/ga1
73	G-8371A	GARST	100.0	0.0	0.0	0.0	ga1/ga1
74	GEN-MANATÍ	GENSEM	100.0	60.0		60.0	Ga1-m/ga1
75	GEN-NILO	GENSEM	100.0	0.0		0.0	ga1/ga1
76	GEN-TÁMESIS	GENSEM	100.0	100.0		100.0	Ga1-m/Ga1-m
77	GH-8123A	GOLDEN HARVEST	100.0	0.0	0.0	0.0	ga1/ga1
78	GH-913A	GOLDEN HARVEST	100.0	0.0	0.0	0.0	ga1/ga1
79	GH-9703A	GOLDEN HARVEST	100.0	0.0	0.0	0.0	ga1/ga1
80	H-8562A	GOLDEN HARVEST	100.0	0.0	0.0	0.0	ga1/ga1
81	H-9166A	GOLDEN HARVEST	98.0	0.0	0.0	0.0	ga1/ga1
82	H-9231A	GOLDEN HARVEST	100.0	0.0	0.0	0.0	ga1/ga1
83	HARTZ-SEED-Z21	HARTZ	100.0	20.0	0.0	10.0	ga1/ga1
84	HARTZ-SEED-Z25	HARTZ	100.0	80.0	76.0	78.0	Ga1-m/Ga1-m
85	HARTZ-SEED-Z30	HARTZ	100.0	0.0	0.0	0.0	ga1/ga1
86	HARTZ-SEED-Z31	HARTZ	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
87	HARTZ-SEED-Z60	HARTZ	100.0	80.0	100.0	90.0	Ga1-m/Ga1-m
88	HARTZ-SEED-Z806	HARTZ	100.0	0.0	0.0	0.0	ga1/ga1

No.	. Institución/Empresa Accesión ¹	Promedios probador macho recesivo‡	Promedios p	orobador hemb	Genotipo propuesto		
1,00		Institution Empresa	(ga1/ga1 tcb1/tcb1)	NC354 x W22P4830	NC354 x W22P5270	Promedio (Ga1-S/Ga1-S)	основро разориского
89	HIT-7	ICAMEX	96.7	100.0	96.0	98.0	Ga1-m/Ga1-m
90	H-526	INIFAP	100.0	80.0	25.0	52.5	Ga1-m/ga1
91	V-534	INIFAP	100.0	95.0	40.0	67.5	Ga1-m/ga1
92	VS-536	INIFAP	100.0	0.0	20.0	10.0	ga1/ga1
93	H-516	INIFAP-IGUALA	100.0	20.0	0.0	10.0	ga1/ga1
94	V-531	INIFAP-IGUALA	100.0	20.0	20.0	20.0	Ga1-m/ga1
95	VS-521	INIFAP-IGUALA	100.0	0.0	0.0	0.0	ga1/ga1
96	VS-529	INIFAP-IGUALA	100.0	0.0	0.0	0.0	ga1/ga1
97	VS-535	INIFAP-IGUALA	91.1	0.0	0.0	0.0	ga1/ga1
98	H-318	INIFAP-JALISCO	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
99	H-319	INIFAP-JALISCO	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
100	H-321	INIFAP-JALISCO	100.0	84.0	100.0	92.0	Ga1-m/Ga1-m
101	H-357	INIFAP-JALISCO	97.3	100.0	100.0	100.0	Ga1-m/Ga1-m
102	H-358	INIFAP-JALISCO	100.0	0.0	0.0	0.0	ga1/ga1
103	H-359	INIFAP-JALISCO	100.0	40.0	40.0	40.0	Ga1-m/ga1
104	H-360	INIFAP-JALISCO	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
105	H-375	INIFAP-JALISCO	100.0	0.0	0.0	0.0	ga1/ga1
106	HV-313-CONLEE	INIFAP-JALISCO	100.0	100.0	74.0	87.0	Ga1-m/Ga1-m
107	REMACO-37	INIFAP-JALISCO	100.0	60.0	0.0	30.0	Ga1-m/ga1
108	REMACO-38	INIFAP-JALISCO	100.0	0.0	0.0	0.0	ga1/ga1
109	REMACO-39	INIFAP-JALISCO	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
110	REMACO-40	INIFAP-JALISCO	100.0	60.0	70.0	65.0	Ga1-m/ga1
111	H-40	INIFAP-V-ALTOS	93.3	100.0	100.0	100.0	Ga1-m/Ga1-m

No.	Institución/Empresa	Accesión ¹	Promedios probador macho recesivo‡	Promedias probadar hembra dominanter			Genotipo propuesto
1,00		Institution Empresa Accessor	(ga1/ga1 tcb1/tcb1)	NC354 x W22P4830	NC354 x W22P5270	Promedio (Ga1-S/Ga1-S)	оспотро разорисово
112	H-48	INIFAP-V-ALTOS	100.0	100.0	80.0	90.0	Ga1-m/Ga1-m
113	H-50	INIFAP-V-ALTOS	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
114	MAYA	INIFAP??	100.0	75.0	60.0	67.5	Ga1-m/ga1
115	JAL-MÉX19-78_HOJERO	JAIME CAMACHO	100.0	20.0		20.0	Ga1-m/ga1
116	KRISTEN-SEED_K-800	MAX SEED	100.0	0.0	0.0	0.0	ga1/ga1
117	KRISTEN-SEED_V-801	MAX SEED	100.0	25.0	0.0	12.5	Ga1-m/ga1
118	MAX-38-SUPER	MAX SEED	80.0	96.0	100.0	98.0	Ga1-m/Ga1-m
119	ASGROW-7573	MONSANTO	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
120	ASGROW-ARX-708A	MONSANTO	95.0	0.0	0.0	0.0	ga1/ga1
121	ASGROW-ARX-715A	MONSANTO	100.0	0.0	0.0	0.0	ga1/ga1
122	ASGROW-BENGALA	MONSANTO	100.0	92.5	100.0	96.3	Ga1-m/Ga1-m
123	ASGROW-BISONTE	MONSANTO	100.0	83.0	100.0	91.5	Ga1-m/Ga1-m
124	ASGROW-CEBU	MONSANTO	100.0	40.0	20.0	30.0	Ga1-m/ga1
125	ASGROW-COBRA	MONSANTO	100.0	80.0	60.0	70.0	Ga1-m/ga1
126	ASGROW-CONDOR	MONSANTO	84.4	84.4	95.0	89.7	Ga1-m/Ga1-m
127	ASGROW-GAVILAN	MONSANTO	97.3	100.0	84.0	92.0	Ga1-m/Ga1-m
128	ASGROW-HALCON	MONSANTO	96.7	80.0	20.0	50.0	Ga1-m/ga1
129	ASGROW-IMPALA	MONSANTO	100.0	0.0	0.0	0.0	ga1/ga1
130	ASGROW-LEON	MONSANTO	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
131	ASGROW-LEOPARDO	MONSANTO	100.0	40.0	80.0	60.0	Ga1-m/ga1
132	ASGROW-LINCE	MONSANTO	100.0	100.0	80.0	90.0	Ga1-m/Ga1-m
133	ASGROW-LOBO	MONSANTO	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
134	ASGROW-NUTRIA	MONSANTO	100.0	100.0	64.0	82.0	Ga1-m/Ga1-m

No.	Institución/Empresa	Accesión ¹	Promedios probador macho recesivo;	Promedios p	orobador hemb	ra dominante‡	Genotipo propuesto
1100	•		(ga1/ga1 tcb1/tcb1)	NC354 x W22P4830	NC354 x W22P5270	Promedio (Ga1-S/Ga1-S)	основро разорисово
135	ASGROW-OSO	MONSANTO	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
136	ASGROW-OSO-N	MONSANTO	100.0	20.0	60.0	40.0	Ga1-m/ga1
137	ASGROW-PANTERA	MONSANTO	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
138	ASGROW-POTRO	MONSANTO	100.0	100.0	92.0	96.0	Ga1-m/Ga1-m
139	ASGROW-PUMA	MONSANTO	100.0	100.0	87.5	93.8	Ga1-m/Ga1-m
140	ASGROW-TIGRE	MONSANTO	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
141	ASGROW-VENADO	MONSANTO	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
142	C-343	MONSANTO	97.3	20.0	16.0	18.0	Ga1-m/ga1
143	DK-1060	MONSANTO	100.0	100.0	90.0	95.0	Ga1-m/Ga1-m
144	DK-2000	MONSANTO	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
145	DK-2002	MONSANTO	100.0	0.0	0.0	0.0	ga1/ga1
146	DK-2010	MONSANTO	100.0	0.0	0.0	0.0	ga1/ga1
147	DK-2020	MONSANTO	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
148	DK-2020Y	MONSANTO	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
149	DK-2025	MONSANTO	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
150	DK-2031	MONSANTO	100.0	80.0	100.0	90.0	Ga1-m/Ga1-m
151	DK-234	MONSANTO	100.0	0.0	0.0	0.0	ga1/ga1
152	DK-353	MONSANTO	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
153	DK-357	MONSANTO	100.0	0.0	0.0	0.0	ga1/ga1
154	DK-867	MONSANTO	100.0	0.0	0.0	0.0	ga1/ga1
155	DK-880	MONSANTO	100.0	0.0	20.0	10.0	ga1/ga1
156	PANTERA-AMARILLO	MONSANTO	100.0	90.0	100.0	95.0	Ga1-m/Ga1-m
157	TIGRE-AMARILLO	MONSANTO	100.0	90.0	100.0	95.0	Ga1-m/Ga1-m

No.	Institución/Empresa	Accesión ¹	Promedios probador macho recesivo;	Promedios p	orobador hemb	ra dominante‡	Genotipo propuesto
1100			(ga1/ga1 tcb1/tcb1)	NC354 x W22P4830	NC354 x W22P5270	Promedio (Ga1-S/Ga1-S)	основро разорисово
158	NOVASEM-9614	NOVASEM	100.0	20.0	50.0	35.0	Ga1-m/ga1
159	NOVASEM-9620	NOVASEM	100.0	96.0	95.0	95.5	Ga1-m/Ga1-m
160	NOVASEM-NB-4	NOVASEM	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
161	P-3025W	PIONEER	100.0	60.0	80.0	70.0	Ga1-m/ga1
162	P-3028W	PIONEER	100.0	0.0	0.0	0.0	ga1/ga1
163	P-3029	PIONEER	100.0	100.0	88.0	94.0	Ga1-m/Ga1-m
164	P-3031	PIONEER	98.0	96.0	100.0	98.0	Ga1-m/Ga1-m
165	P-3041	PIONEER	100.0	20.0	40.0	30.0	Ga1-m/ga1
166	P-3066W	PIONEER	100.0	100.0	25.0	62.5	Ga1-m/ga1
167	P-3086	PIONEER	97.8	100.0	100.0	100.0	Ga1-m/Ga1-m
168	P-30A60	PIONEER	100.0	0.0	0.0	0.0	ga1/ga1
169	P-30B74	PIONEER	100.0	0.0	0.0	0.0	ga1/ga1
170	P-30F32	PIONEER	100.0	40.0	85.7	62.9	Ga1-m/ga1
171	P-30F35	PIONEER	100.0	0.0	0.0	0.0	ga1/ga1
172	P-30F53	PIONEER	100.0	0.0	0.0	0.0	ga1/ga1
173	P-30F83	PIONEER	100.0	0.0	0.0	0.0	ga1/ga1
174	P-30F87	PIONEER	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
175	P-30F93	PIONEER	100.0	0.0	0.0	0.0	ga1/ga1
176	P-30F94	PIONEER	100.0	20.0	40.0	30.0	Ga1-m/ga1
177	P-30F96	PIONEER	100.0	0.0	0.0	0.0	ga1/ga1
178	P-30F97	PIONEER	100.0	0.0	0.0	0.0	ga1/ga1
179	P-30F98	PIONEER	100.0	0.0	0.0	0.0	ga1/ga1
180	P-30G40	PIONEER	97.3	0.0	0.0	0.0	ga1/ga1

No.	Institución/Empresa	Accesión ¹	Promedios probador macho recesivo‡	Promedios p	orobador hemb	ra dominante‡	Genotipo propuesto
1100			(gal/gal tcbl/tcbl)	NC354 x W22P4830	NC354 x W22P5270	Promedio (Ga1-S/Ga1-S)	оспопро разорисько
181	P-30G45	PIONEER	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
182	P-30G54	PIONEER	100.0	0.0	0.0	0.0	ga1/ga1
183	P-30G57	PIONEER	100.0	80.0	36.0	58.0	Ga1-m/ga1
184	P-30G59	PIONEER	100.0	0.0	0.0	0.0	ga1/ga1
185	P-30G88	PIONEER	93.3	100.0	100.0	100.0	Ga1-m/Ga1-m
186	P-30H74	PIONEER	100.0	0.0	0.0	0.0	ga1/ga1
187	P-30K54	PIONEER	100.0	0.0	0.0	0.0	ga1/ga1
188	P-30K73	PIONEER	100.0	100.0	80.0	90.0	Ga1-m/Ga1-m
189	P-30P16	PIONEER	100.0	0.0	0.0	0.0	ga1/ga1
190	P-30P34	PIONEER	100.0	100.0	80.0	90.0	Ga1-m/Ga1-m
191	P-30P45	PIONEER	100.0	0.0	0.0	0.0	ga1/ga1
192	P-30P49	PIONEER	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
193	P-30P70	PIONEER	100.0	100.0		100.0	Ga1-m/Ga1-m
194	P-30R92	PIONEER	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
195	P-30T26	PIONEER	100.0	100.0	90.0	95.0	Ga1-m/Ga1-m
196	P-30V46	PIONEER	96.7	0.0	0.0	0.0	ga1/ga1
197	P-31G66	PIONEER	100.0	2.5	0.0	1.3	ga1/ga1
198	P-32D06	PIONEER	93.8	100.0	100.0	100.0	Ga1-m/Ga1-m
199	P-32H39	PIONEER	96.4	0.0	0.0	0.0	ga1/ga1
200	P-32R21	PIONEER	100.0	0.0	0.0	0.0	ga1/ga1
201	P-32R92	PIONEER	100.0	80.0	100.0	90.0	Ga1-m/Ga1-m
202	P-3394	PIONEER	100.0	0.0	0.0	0.0	ga1/ga1
203	P-33J52A	PIONEER	100.0	0.0	0.0	0.0	ga1/ga1

No.	Institución/Empresa	Accesión ¹	Promedios probador macho recesivo‡	Promedios p	orobador hemb	ra dominante‡	Genotipo propuesto
1100	·		(ga1/ga1 tcb1/tcb1)	NC354 x W22P4830	NC354 x W22P5270	Promedio (Ga1-S/Ga1-S)	Concept propuesto
204	P-33J56	PIONEER	100.0	0.0	0.0	0.0	ga1/ga1
205	P-33T17	PIONEER	86.7	0.0	0.0	0.0	ga1/ga1
206	P-33Y62B	PIONEER	99.0	0.0	0.0	0.0	ga1/ga1
207	P-35P12	PIONEER	86.7	0.0	0.0	0.0	ga1/ga1
208	LUCERO-800	SEMILLAS AMANECER	100.0	0.0	20.0	10.0	Ga1-m/ga1
209	LUCERO-808	SEMILLAS AMANECER	100.0	80.0	100.0	90.0	Ga1-m/Ga1-m
210	LUCERO-901	SEMILLAS AMANECER	100.0	66.7	100.0	83.3	Ga1-m/ga1
211	LUCERO-910A	SEMILLAS AMANECER	100.0	60.0	50.0	55.0	Ga1-m/ga1
212	SB-302	SEMILLAS BERENTZEN	94.0	50.0	20.0	35.0	Ga1-m/ga1
213	SB-347	SEMILLAS BERENTZEN	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m
214	MAX-1003	SEMILLAS MAX	100.0	40.0	0.0	20.0	Ga1-m/ga1
215	BAYO-M	SEMILLAS RICA	100.0	60.0	40.0	50.0	Ga1-m/ga1
216	CANELO	SEMILLAS RICA	100.0	60.0	20.0	40.0	Ga1-m/ga1
217	COLORADO-M	SEMILLAS RICA	100.0	30.0		30.0	Ga1-m/ga1
218	GRANO-DE-ORO	SEMILLAS RICA	100.0	90.0		90.0	Ga1-m/Ga1-m
219	HOJA-DE-PLATA	SEMILLAS RICA	100.0	1.0	20.0	10.5	ga1/ga1
220	PALOMINO	SEMILLAS RICA	100.0	40.0	0.0	20.0	Ga1-m/ga1
221	TORDILLO	SEMILLAS RICA	100.0	20.0		20.0	Ga1-m/ga1
222	ALS-666	SEMILLAS-ALSA	100.0	100.0	87.5	93.8	Ga1-m/Ga1-m
223	NK-1822	SYNGENTA	100.0	0.0	0.0	0.0	ga1/ga1
224	NK-1851	SYNGENTA	100.0	0.0	0.0	0.0	ga1/ga1
225	NK-83NS-A	SYNGENTA	99.5	0.0	0.0	0.0	ga1/ga1
226	NK-MURANO	SYNGENTA	100.0	100.0	100.0	100.0	Ga1-m/Ga1-m

No.	Institución/Empresa	Accesión ¹	Promedios probador macho recesivo‡	Promedios p	orobador hemb	Genotipo propuesto	
1100	•		(ga1/ga1 tcb1/tcb1)	NC354 x W22P4830	NC354 x W22P5270	Promedio (Ga1-S/Ga1-S)	Genoupo propuesto
227	TAYLOR-170A	TAYLOR	100.0	11.1	0.0	5.6	ga1/ga1
228	QT-318	TROPICO SEEDS	100.0	80.0	100.0	90.0	Ga1-m/Ga1-m
229	QT-FOLIUS(H-562)	TROPICO SEEDS	100.0	40.0	40.0	40.0	Ga1-m/ga1
230	UDEG-CS-BLANCA	UDEG	100.0	96.0	76.0	86.0	Ga1-m/Ga1-m
231	UDEG-CT-BLANCA	UDEG	100.0	100.0	20.0	60.0	Ga1-m/ga1
232	UDEG-QPM06	UDEG	100.0	0.0	0.0	0.0	ga1/ga1
233	EOLO	UNISEM	100.0	0.0	0.0	0.0	ga1/ga1
234	LOGOS	UNISEM	100.0	20.0	20.0	20.0	Ga1-m/ga1
235	TRITON	UNISEM	100.0	6.0	60.0	33.0	Ga1-m/ga1
236	DULCE-EPID'OR-F1	VÍTA 755	100.0		20.0	20.0	Ga1-m/ga1
237	ZR-22	ZARCO	100.0	75.0	100.0	87.5	Ga1-m/Ga1-m

¹ ID cultivar comercial; [‡] = Promedios de porcentajes;

El alelo *Ga1-m* está presente en el 63.2% de las 39 empresas evaluadas (Cuadro 25). Este alelo neutro fertiliza el óvulo con los alelos *ga1* y *Ga1-S*. El alelo recesivo *ga1* presente en 21 empresas representa el 36.8%. La tendencia observada para *Ga1-m* se debe a que por ser alelo neutro, no existen problemas de restricción y discriminación del grano de polen cuando están presentes los otros dos alelos (*ga1* y *Ga1-S*); es decir sus estigmas son receptivos tanto al grano de polen de *ga1* como al grano de polen de *Ga1-S*, y el polen *Ga1-m* fecunda al genotipo *ga1/ga1* y a el genotipo *Ga1-S/Ga1-S*, quizás debido al tipo de germoplasma usado en los programas de mejoramiento de cada empresa, que probablemente partieron de bases diferentes, caso Monsanto y Pioneer, donde el primero presentó mayor frecuencia del alelo *Ga1-m*, y la segunda empresa presentó mayor frecuencia del alelo recesivo *ga1*. Monsanto con 8 híbridos *ga1/ga1* contra 27 de Pioneer y el 20.5 y 57.4%, respectivamente (ver Cuadro 24 y Figura 4).

Cuadro 25. Distribución de los alelos de incompatibilidad del locus *ga1* en Empresas e Instituciones para híbridos comerciales sembrados durante los años 2007-2009, en los campos experimentales del CUCBA.

De 39 empresas e intituciones ¹		Porcentajes
Ga1-m/-	36	63.2
ga1/ga1	21	36.8
	57 accesiones	100

¹ Excluvendo DESCONOCIDO e INIFAP??

El Cuadro 26 presenta los datos expresados en porcentajes, de la presencia de los alelos del sistema de incompatibilidad *ga1*. En general, un 34.18% involucra el alelo *ga1*, 43.46% a *Ga1-m* y con 22.36% a híbridos con genotipo heterocigoto para los alelos *ga1* y *Ga1-m*.

Cuadro 26. Porcentajes de híbridos con presencia de *ga1*, *Ga1-m* y *Ga1-S* evaluados durante los años 2005-2009 en los campos experimentales del CUCBA.

Genotipo	No. Instituciones ¹	No. Accesiones	% Accesiones	% Alelo	
ga1/ga1	22	81	34.18	34.18	gal
gal/Gal-m	15	25 20	10.13	22.36	Gal-m, gal
Ga1-m/ga1	16	29	12.23		
Ga1-m/Ga1-m	29	103	43.46	43.46	Ga1-m
Total	82	237	100	100	
Total evaluadas	41	237			

¹⁼ Algunas Instituciones presentaron diferentes genotipos.

4.2.2. Locus *tcb1*

La prueba de normalidad señaló que los datos de llenado de grano en mazorca fueron significativos (Cuadro 21) y ninguna de las transformaciones aplicadas logró la normalidad de los datos, por lo que el análisis de varianza procedió sin mediar transformación alguna.

El análisis de varianza (ANVA) para el locus *tcb1* no presentó diferencias significativas en ninguna de las dos fuentes de variación. Presentó un coeficiente de variación alto de 597.96% (Cuadro 27), propio por el tipo de datos que se manejan, con una altísima frecuencia del dato cero (cero llenado de grano en mazorca), y con valor de R² considerado como moderado de 0.431.

Cuadro 27. Análisis de varianza del locus de incompatibilidad *tcb1* en híbridos de maíz de Instituciones y Empresas evaluados durante el año 2009 en los campos experimentales del CUCBA.

	Probador hembra dominante				
FV		Tcb1-S/-			
	GL	CM	Pr > F		
Institución/Empresa	39	100.753	1.000	ns	
Accesión(Institución/Empresa)	178	48.857	1.000	ns	
Error	45	424.188			
Total	262				
CV		597.96			
R^2		0.431			

Donde: FV= Fuente de variación; GL= grados de libertad; CM= Cuadrado medio; ns= no significativo; CV=coeficiente de variación; R²= coeficiente de determinación.

Los promedios del llenado de grano en mazorca en el sistema de incompatibilidad TIC (Cuadro 28), son resultados de la polinización de los híbridos comerciales de maíz al probador hembra LUG03xW22-TIC-1.1.

El estudio referente al factor de incompatibilidad TIC, determinó que no está presente en los híbridos comerciales de maíz.

Cuadro 28. Promedios en el llenado de grano en mazorca de los híbridos comerciales con probadores hembra dominante del locus de incompatibilidad *tcb1* en los campos experimentales del CUCBA.

No.	Institución/Empresa	N^1	Promedio	Desv. Std.
1	AGROSIMI	5	0.00	0.00
2	AGROZENAY	2	0.00	0.00
3	AGRYVEN S. DE R.	6	0.00	0.00
4	ASPROS	7	16.44	21.97
5	CALORO	1	0.00 .	

No.	Institución/Empresa	N^1	Promedio	Desv. Std.
6	CERES	16	4.84	10.20
7	CIMMYT	19	5.82	16.12
8	CONLEE	9	1.67	3.54
9	CRISTIANI BURKARD	3	0.00	0.00
10	DAS	2	0.00	0.00
11	DESCONOCIDO	1	0.00 .	
12	DOW	2	9.00	12.73
13	EAGLE	8	8.88	24.70
14	EL CAMINO	6	0.00	0.00
15	GARST	3	0.00	0.00
16	GENSEM	4	0.00	0.00
17	GOLDEN HARVEST	7	1.10	2.25
18	HARTZ	8	7.63	12.74
19	ICAMEX	3	20.62	24.71
20	INIFAP	3	0.00	0.00
21	INIFAP-IGUALA	6	0.00	0.00
22	INIFAP-JALISCO	6	0.00	0.00
23	INIFAP-V-ALTOS	6	19.75	28.74
24	INIFAP??	1	0.00 .	
25	JAIME CAMACHO	1	0.00 .	
26	MAX SEED	2	0.00	0.00
27	MONSANTO	43	4.91	13.13
28	NOVASEM	2	0.00	0.00
29	PIONEER	50	0.54	2.45
30	SEMILLAS ALSA	1	0.00 .	
31	SEMILLAS AMANECER	4	0.42	0.84
32	SEMILLAS BERENTZ	3	3.33	5.77
33	SEMILLAS MAX	2	0.00	0.00
34	SEMILLAS RICA	8	0.00	0.00
35	SYNGENTA	4	0.00	0.00
36	TAYLOR	1	0.00 .	
37	TRÓPICO SEEDS	2	0.00	0.00
38	UDEG	2	0.00	0.00
39	UNISEM	3	0.00	0.00
40	ZARCO	1	0.00 .	

¹ N= cantidad de veces representado (por probadores y años); Promedio= promedio general de la variable llenado de grano en mazorca; Desv. Std.= desviación estándar.

La prueba de Dunnett no presentó diferencias estadísticas en el experimento de híbridos comerciales (Cuadro 23). Todos los híbridos comerciales evaluados son estadísticamente iguales a 0% del llenado de grano en mazorca con el probador hembra dominante LUG03xW22-TIC-1.1 (*Tcb1-S/-*). Algunos de los híbridos de las empresas ASPROS, ICAMEX e INIFAP-Valles-Altos resultaron con llenados de grano parciales (con 16.44, 20.62 y 19.75% respectivamente de llenado de grano en la

mazorca), debido muy probablemente a la presencia de alelos inhibidores o modificadores de los genes de incompatibilidad.

Continuando con la caracterización de la presencia de alelos de incompatibilidad de los híbridos comerciales de maíz que se siembran en México, respecto a el factor de incompatibilidad tcb1, 218 híbridos fueron evaluados y probado su grano de polen con dos probadores hembra, siendo las cruzas simples de maíz LUG03xW22-TIC-1.1 y (M-ILL-G9BxP87C5)xW22-TIC-1.1 (Cuadro 29) resultando con mayor consistencia y confiabilidad para discriminar y clasificar a los híbridos comerciales fue el probador hembra LUG03xW22-TIC-1.1. El probador hembra (M-ILL-G9BxP87C5)xW22-TIC-1.1, presentó llenados de grano en mazorca mayores de 20% en sus cruzas con varios híbridos comerciales, mientras que esos mismos híbridos no mostraron llenado de grano en mazorca (0%) cuando fueron cruzadas con el probador hembra LUG03xW22-TIC-1.1. La causa probable de las diferencias en el llenado de grano en mazorca sea la ausencia de modificadores o la presencia de inhibidores de la acción del Tcb1-S en las cruzas con el probador (M-ILL-G9BxP87C5)xW22-TIC-1.1 (Cuadro 29). El híbrido comercial NIEBLA de la empresa CERES 7.14% del llenado de grano en mazorca (Cuadro 29) con el probador hembra presentó LUG03xW22-TIC-1.1, pero de acuerdo a la prueba de Dunnett (Cuadro 23), el resultado no es significativo.

Cuadro 29. Propuesta de alelos detectados del sistema de incompatibilidad tcb1, para híbridos comerciales de instituciones públicas y empresas privadas durante el año 2009 en los campos experimentales del CUCBA, con los probadores hembra LUG03xTIC1.1 y CIMMyTxTIC1.1.

			Promedios probador	Promedios p	robador hembra	
No.	Institución/Empresa	Accesión ²	macho recesivo‡	dominan	te‡ (<i>Tcb1-S</i> /-)	Alelos detectados
			(ga1/ga1 tcb1/tcb1)	Lug03xTIC1.1 ³	CIMMyTxTIC1.1 ⁴	
1	AGROSIMI-701	AGROSIMI	90.5	0.0		tcb1/tcb1
2	AGROSIMI-705	AGROSIMI	100.0	0.0		tcb1/tcb1
3	AGROSIMI-709A	AGROSIMI	100.0	0.0		tcb1/tcb1
4	AGROSIMI-710A	AGROSIMI	100.0	0.0		tcb1/tcb1
5	AGROSIMI-728A	AGROSIMI	100.0	0.0		tcb1/tcb1
6	M-629	AGROZENAY	91.7	0.0		tcb1/tcb1
7	M-630	AGROZENAY	100.0	0.0		tcb1/tcb1
8	AV-31	AGRYVEN S. DE R.L.	100.0	0.0		tcb1/tcb1
9	AV-42	AGRYVEN S. DE R.L.	100.0	0.0		tcb1/tcb1
10	AV-51	AGRYVEN S. DE R.L.	87.5	0.0		tcb1/tcb1
11	AV-62	AGRYVEN S. DE R.L.	100.0	0.0		tcb1/tcb1
12	AV-71	AGRYVEN S. DE R.L.	100.0	0.0		tcb1/tcb1
13	AV-Z	AGRYVEN S. DE R.L.	100.0	0.0		tcb1/tcb1
14	AS-1501	ASPROS	100.0	0.0		tcb1/tcb1
15	AS-721	ASPROS	100.0	0.0	27.0	tcb1/tcb1
16	AS-722	ASPROS	100.0		28.6	tcb1/tcb1
17	AS-820	ASPROS	100.0		32.5	tcb1/tcb1
18	AS-902	ASPROS	100.0	0.0		tcb1/tcb1
				0.0		

ID cultivares comerciales; [‡] = Promedios de porcentajes; LUG03xW22-TIC-1.1; (M-ILL-G9BxP87C5)xW22-TIC-1.1; (M-ILL-G9BxP87C5)xW22-TIC-1.1;

			Promedios probador	Promedios p	robador hembra	
No.	Institución/Empresa	Accesión ²	macho recesivo‡	dominant	te‡ (<i>Tcb1-S/-</i>)	Alelos detectados
			(ga1/ga1 tcb1/tcb1)	Lug03xTIC1.1 ³	CIMMyTxTIC1.1 ⁴	
19	ELOTERO-3311	CALORO	92.0	0.0		tcb1/tcb1
20	CICLON-XR	CERES	100.0	0.0		tcb1/tcb1
21	CME-560	CERES	92.0	0.0	0.0	tcb1/tcb1
22	CME-561	CERES	100.0	0.0		tcb1/tcb1
23	FUEGO	CERES	100.0	0.0		tcb1/tcb1
24	FUEGO-XR	CERES	100.0	0.0		tcb1/tcb1
25	NIEBLA	CERES	100.0	7.1	21.7	tcb1/tcb1
26	TORNADO	CERES	100.0	0.0		tcb1/tcb1
27	TORNADO-XR	CERES	100.0	0.0		tcb1/tcb1
28	TORNADO-XR2	CERES	100.0	0.0		tcb1/tcb1
29	XR-20A	CERES	100.0	0.0	28.0	tcb1/tcb1
30	XR-45	CERES	100.0	0.0		tcb1/tcb1
31	(464X175)XBTZ	CIMMYT	100.0	0.0		tcb1/tcb1
32	B236X(239XGWIC)	CIMMYT	100.0		0.0	tcb1/tcb1
33	CL-4368XCL-SPLW04	CIMMYT	100.0	0.0		tcb1/tcb1
34	CLQ-RCWQ10XCML491	CIMMYT	100.0	0.0		tcb1/tcb1
35	CML142XCML186	CIMMYT	100.0	0.0		tcb1/tcb1
36	CML144XCML159	CIMMYT	100.0	0.0		tcb1/tcb1
37	CML175XCML176	CIMMYT	100.0	0.0		tcb1/tcb1
38	CML244XCML349	CIMMYT	100.0		8.0	tcb1/tcb1
39	CML246XCML242	CIMMYT	100.0	•	50.0	tcb1/tcb1
40	CML247XCML254	CIMMYT	100.0	0.0		tcb1/tcb1
41	CML491XCML176	CIMMYT	100.0	0.0		tcb1/tcb1

			Promedios probador	Promedios p	robador hembra	
No.	Institución/Empresa	Accesión ²	macho recesivo‡	dominan	te‡ (<i>Tcb1-S</i> /-)	Alelos detectados
			(ga1/ga1 tcb1/tcb1)	Lug03xTIC1.1 ³	CIMMyTxTIC1.1 ⁴	
42	CML491XCML503	CIMMYT	100.0	0.0		tcb1/tcb1
43	CML494XCML495	CIMMYT	100.0	0.0		tcb1/tcb1
44	CML78XCML373	CIMMYT	100.0	0.0		tcb1/tcb1
45	MESAMLINILLXG9B	CIMMYT	100.0	0.0	23.3	tcb1/tcb1
46	P501XP502	CIMMYT	100.0	0.0		tcb1/tcb1
47	AG-3301	CONLEE	100.0	0.0		tcb1/tcb1
48	CONLEE-MATADOR	CONLEE	93.3	0.0		tcb1/tcb1
49	CONLEE-MILENIO	CONLEE	86.7	0.0	5.0	tcb1/tcb1
50	CONLEE-RANCHERO	CONLEE	88.0	0.0	10.0	tcb1/tcb1
51	DON-ABEL	CONLEE	100.0	0.0		tcb1/tcb1
52	H-024505_CAZADOR	CONLEE	100.0	0.0		tcb1/tcb1
53	SCM-2801_VAQUERO	CONLEE	96.0	0.0		tcb1/tcb1
54	CRISTIANI-CRM-50	CRISTIANI BURKARD	100.0	0.0		tcb1/tcb1
55	CRISTIANI-CRM-51	CRISTIANI BURKARD	100.0	0.0		tcb1/tcb1
56	HMX3	CRISTIANI BURKARD	100.0	0.0		tcb1/tcb1
57	DAS-2301	DAS	100.0	0.0		tcb1/tcb1
58	DAS-2348	DAS	100.0	0.0		tcb1/tcb1
59	F-5721A	DESCONOCIDO	100.0	0.0		tcb1/tcb1
60	DOW-2A120	DOW	100.0		18.0	tcb1/tcb1
61	DOW-2B150	DOW	91.5	0.0		tcb1/tcb1
62	E-205B	EAGLE	100.0	0.6	26.3	tcb1/tcb1
63	E-213B	EAGLE	100.0	0.0		tcb1/tcb1
64	E-214S-B	EAGLE	100.0	0.0		tcb1/tcb1

			Promedios probador			
No.	Institución/Empresa	Accesión ²	macho recesivo‡	dominan	te‡ (<i>Tcb1-S</i> /-)	Alelos detectados
			(ga1/ga1 tcb1/tcb1)	Lug03xTIC1.1 ³	CIMMyTxTIC1.1 ⁴	
65	E-300A	EAGLE	100.0	0.0	0.0	tcb1/tcb1
66	ELC-130A	EL CAMINO	75.4		0.0	tcb1/tcb1
67	ELC-172A	EL CAMINO	100.0	0.0	0.0	tcb1/tcb1
68	ELC-179A	EL CAMINO	100.0	0.0		tcb1/tcb1
69	ELC-182A	EL CAMINO	100.0	0.0		tcb1/tcb1
70	ELC-189	EL CAMINO	100.0	0.0		tcb1/tcb1
71	G-8278B	GARST	100.0	0.0		tcb1/tcb1
72	G-8327A	GARST	100.0		0.0	tcb1/tcb1
73	G-8371A	GARST	100.0		0.0	tcb1/tcb1
74	GEN-MANATÍ	GENSEM	100.0	0.0	0.0	tcb1/tcb1
75	GEN-NILO	GENSEM	100.0	0.0		tcb1/tcb1
76	GEN-TÁMESIS	GENSEM	100.0	0.0		tcb1/tcb1
77	GH-8123A	GOLDEN HARVEST	100.0		0.0	tcb1/tcb1
78	GH-913A	GOLDEN HARVEST	100.0	0.0	0.0	tcb1/tcb1
79	GH-9703A	GOLDEN HARVEST	100.0		0.0	tcb1/tcb1
80	H-8562A	GOLDEN HARVEST	100.0		6.0	tcb1/tcb1
81	H-9166A	GOLDEN HARVEST	98.0		1.7	tcb1/tcb1
82	H-9231A	GOLDEN HARVEST	100.0	0.0		tcb1/tcb1
83	HARTZ-SEED-Z21	HARTZ	100.0	0.0		tcb1/tcb1
84	HARTZ-SEED-Z25	HARTZ	100.0	0.0		tcb1/tcb1
85	HARTZ-SEED-Z30	HARTZ	100.0	0.0		tcb1/tcb1
86	HARTZ-SEED-Z31	HARTZ	100.0	0.0		tcb1/tcb1
87	HARTZ-SEED-Z60	HARTZ	100.0	5.0	28.2	tcb1/tcb1

			Promedios probador	Promedios p	robador hembra	
No.	Institución/Empresa	Accesión ²	macho recesivo‡	dominan	te‡ (<i>Tcb1-S</i> /-)	Alelos detectados
			(ga1/ga1 tcb1/tcb1)	Lug03xTIC1.1 ³	CIMMyTxTIC1.1 ⁴	
88	HARTZ-SEED-Z806	HARTZ	100.0	0.0		tcb1/tcb1
89	HIT-7	ICAMEX	96.7	0.0	23.3	tcb1/tcb1
90	H-526	INIFAP	100.0	0.0		tcb1/tcb1
91	V-534	INIFAP	100.0	0.0		tcb1/tcb1
92	VS-536	INIFAP	100.0	0.0		tcb1/tcb1
93	H-516	INIFAP-IGUALA	100.0		0.0	tcb1/tcb1
94	V-531	INIFAP-IGUALA	100.0	0.0		tcb1/tcb1
95	VS-521	INIFAP-IGUALA	100.0	0.0	0.0	tcb1/tcb1
96	VS-529	INIFAP-IGUALA	100.0	0.0		tcb1/tcb1
97	VS-535	INIFAP-IGUALA	91.1	0.0		tcb1/tcb1
98	H-318	INIFAP-JALISCO	100.0	0.0		tcb1/tcb1
99	H-319	INIFAP-JALISCO	100.0	0.0		tcb1/tcb1
100	H-357	INIFAP-JALISCO	97.3	0.0		tcb1/tcb1
101	H-358	INIFAP-JALISCO	100.0	0.0		tcb1/tcb1
102	H-375	INIFAP-JALISCO	100.0	0.0		tcb1/tcb1
103	HV-313-CONLEE	INIFAP-JALISCO	100.0	0.0		tcb1/tcb1
104	H-40	INIFAP-V-ALTOS	93.3	0.0	35.0	tcb1/tcb1
105	H-48	INIFAP-V-ALTOS	100.0		6.0	tcb1/tcb1
106	H-50	INIFAP-V-ALTOS	100.0	0.0	42.5	tcb1/tcb1
107	MAYA	INIFAP??	100.0	0.0		tcb1/tcb1
108	JAL-MÉX19-78_HOJERO	JAIME CAMACHO	100.0	0.0		tcb1/tcb1
109	KRISTEN-SEED_V-801	MAX SEED	100.0	0.0		tcb1/tcb1
110	MAX-38-SUPER	MAX SEED	80.0	0.0		tcb1/tcb1

			Promedios probador	Promedios p	robador hembra	
No.	Institución/Empresa	Accesión ²	macho recesivo‡	dominan	te‡ (<i>Tcb1-S</i> /-)	Alelos detectados
			(ga1/ga1 tcb1/tcb1)	Lug03xTIC1.1 ³	CIMMyTxTIC1.1 ⁴	
111	ASGROW-7573	MONSANTO	100.0	0.0		tcb1/tcb1
112	ASGROW-ARX-708A	MONSANTO	95.0		0.0	tcb1/tcb1
113	ASGROW-ARX-715A	MONSANTO	100.0		6.0	tcb1/tcb1
114	ASGROW-BENGALA	MONSANTO	100.0	0.0		tcb1/tcb1
115	ASGROW-BISONTE	MONSANTO	100.0	0.0		tcb1/tcb1
116	ASGROW-CEBU	MONSANTO	100.0	0.0		tcb1/tcb1
117	ASGROW-COBRA	MONSANTO	100.0	0.0		tcb1/tcb1
118	ASGROW-CONDOR	MONSANTO	84.4		24.0	tcb1/tcb1
119	ASGROW-GAVILAN	MONSANTO	97.3	0.0	28.0	tcb1/tcb1
120	ASGROW-IMPALA	MONSANTO	100.0	0.0	0.0	tcb1/tcb1
121	ASGROW-LEON	MONSANTO	100.0	0.0		tcb1/tcb1
122	ASGROW-LEOPARDO	MONSANTO	100.0	0.0	25.0	tcb1/tcb1
123	ASGROW-LINCE	MONSANTO	100.0	0.0		tcb1/tcb1
124	ASGROW-NUTRIA	MONSANTO	100.0	0.0		tcb1/tcb1
125	ASGROW-OSO	MONSANTO	100.0	0.0		tcb1/tcb1
126	ASGROW-OSO-N	MONSANTO	100.0	0.0		tcb1/tcb1
127	ASGROW-PANTERA	MONSANTO	100.0	0.0		tcb1/tcb1
128	ASGROW-POTRO	MONSANTO	100.0	0.0		tcb1/tcb1
129	ASGROW-PUMA	MONSANTO	100.0	0.0		tcb1/tcb1
130	ASGROW-TIGRE	MONSANTO	100.0	0.0	10.0	tcb1/tcb1
131	ASGROW-VENADO	MONSANTO	100.0	0.0		tcb1/tcb1
132	C-343	MONSANTO	97.3	0.0		tcb1/tcb1
133	DK-1060	MONSANTO	100.0	0.0	40.0	tcb1/tcb1

			Promedios probador	Promedios p	robador hembra	
No.	Institución/Empresa	Accesión ²	macho recesivo‡	dominan	te‡ (<i>Tcb1-S</i> /-)	Alelos detectados
			(ga1/ga1 tcb1/tcb1)	Lug03xTIC1.1 ³	CIMMyTxTIC1.1 ⁴	
134	DK-2002	MONSANTO	100.0	0.0		tcb1/tcb1
135	DK-2010	MONSANTO	100.0	0.0		tcb1/tcb1
136	DK-2020	MONSANTO	100.0	0.0		tcb1/tcb1
137	DK-2020Y	MONSANTO	100.0	0.0		tcb1/tcb1
138	DK-2025	MONSANTO	100.0	0.0	10.0	tcb1/tcb1
139	DK-2031	MONSANTO	100.0	0.0		tcb1/tcb1
140	DK-234	MONSANTO	100.0	0.0		tcb1/tcb1
141	DK-353	MONSANTO	100.0	0.0		tcb1/tcb1
142	DK-357	MONSANTO	100.0	0.0		tcb1/tcb1
143	PANTERA-AMARILLO	MONSANTO	100.0	0.0		tcb1/tcb1
144	TIGRE-AMARILLO	MONSANTO	100.0	0.0	15.0	tcb1/tcb1
145	NOVASEM-9620	NOVASEM	100.0	0.0		tcb1/tcb1
146	NOVASEM-NB-4	NOVASEM	100.0	0.0		tcb1/tcb1
147	P-3025W	PIONEER	100.0	0.0	2.5	tcb1/tcb1
148	P-3028W	PIONEER	100.0	0.0		tcb1/tcb1
149	P-3031	PIONEER	98.0	0.0		tcb1/tcb1
150	P-3041	PIONEER	100.0	0.0		tcb1/tcb1
151	P-3066W	PIONEER	100.0	0.0	0.0	tcb1/tcb1
152	P-3086	PIONEER	97.8	0.0		tcb1/tcb1
153	P-30A60	PIONEER	100.0	0.0		tcb1/tcb1
154	P-30B74	PIONEER	100.0	0.0		tcb1/tcb1
155	P-30F32	PIONEER	100.0	0.0		tcb1/tcb1
156	P-30F35	PIONEER	100.0	0.0		tcb1/tcb1

			Promedios probador	Promedios p	robador hembra	
No.	Institución/Empresa	Accesión ²	macho recesivo‡	dominan	te‡ (<i>Tcb1-S</i> /-)	Alelos detectados
			(ga1/ga1 tcb1/tcb1)	Lug03xTIC1.1 ³	CIMMyTxTIC1.1 ⁴	
157	P-30F53	PIONEER	100.0	0.0		tcb1/tcb1
158	P-30F83	PIONEER	100.0	0.0		tcb1/tcb1
159	P-30F87	PIONEER	100.0	0.0		tcb1/tcb1
160	P-30F93	PIONEER	100.0	0.0	0.0	tcb1/tcb1
161	P-30F94	PIONEER	100.0	0.0		tcb1/tcb1
162	P-30F96	PIONEER	100.0	0.0		tcb1/tcb1
163	P-30F97	PIONEER	100.0	0.0		tcb1/tcb1
164	P-30G40	PIONEER	97.3	0.0		tcb1/tcb1
165	P-30G45	PIONEER	100.0	0.0		tcb1/tcb1
166	P-30G54	PIONEER	100.0	0.0		tcb1/tcb1
167	P-30G57	PIONEER	100.0	0.0	0.0	tcb1/tcb1
168	P-30G59	PIONEER	100.0	0.0		tcb1/tcb1
169	P-30G88	PIONEER	93.3	0.0		tcb1/tcb1
170	P-30H74	PIONEER	100.0	0.0		tcb1/tcb1
171	P-30K54	PIONEER	100.0	0.0		tcb1/tcb1
172	P-30K73	PIONEER	100.0	0.0		tcb1/tcb1
173	P-30P16	PIONEER	100.0	0.0		tcb1/tcb1
174	P-30P34	PIONEER	100.0	0.0		tcb1/tcb1
175	P-30P45	PIONEER	100.0	0.0		tcb1/tcb1
176	P-30P49	PIONEER	100.0	0.0		tcb1/tcb1
177	P-30P70	PIONEER	100.0	0.0		tcb1/tcb1
178	P-30R92	PIONEER	100.0	0.0		tcb1/tcb1
179	P-30T26	PIONEER	100.0	0.0		tcb1/tcb1

			Promedios probador	Promedios p	Promedios probador hembra				
No.	Institución/Empresa	Accesión ²	macho recesivo‡	dominan	te‡ (<i>Tcb1-S</i> /-)	Alelos detectados			
			(ga1/ga1 tcb1/tcb1)	Lug03xTIC1.1 ³	CIMMyTxTIC1.1 ⁴				
180	P-30V46	PIONEER	96.7	0.0		tcb1/tcb1			
181	P-31G66	PIONEER	100.0		0.0	tcb1/tcb1			
182	P-32D06	PIONEER	93.8	0.0	16.7	tcb1/tcb1			
183	P-32H39	PIONEER	96.4		0.0	tcb1/tcb1			
184	P-32R21	PIONEER	100.0	4.0		tcb1/tcb1			
185	P-3394	PIONEER	100.0	0.0		tcb1/tcb1			
186	P-33J52A	PIONEER	100.0	0.0		tcb1/tcb1			
187	P-33J56	PIONEER	100.0	0.0		tcb1/tcb1			
188	P-33T17	PIONEER	86.7		2.0	tcb1/tcb1			
189	P-33Y62B	PIONEER	99.0	0.0		tcb1/tcb1			
190	P-35P12	PIONEER	86.7	0.0	0.0	tcb1/tcb1			
191	LUCERO-800	SEMILLAS AMANECER	100.0	1.7		tcb1/tcb1			
192	LUCERO-808	SEMILLAS AMANECER	100.0	0.0		tcb1/tcb1			
193	LUCERO-901	SEMILLAS AMANECER	100.0	0.0		tcb1/tcb1			
194	LUCERO-910A	SEMILLAS AMANECER	100.0	0.0		tcb1/tcb1			
195	SB-302	SEMILLAS BERENTZEN	94.0	0.0	10.0	tcb1/tcb1			
196	SB-347	SEMILLAS BERENTZEN	100.0	0.0		tcb1/tcb1			
197	MAX-1003	SEMILLAS MAX	100.0	0.0	0.0	tcb1/tcb1			
198	BAYO-M	SEMILLAS RICA	100.0	0.0	0.0	tcb1/tcb1			
199	CANELO	SEMILLAS RICA	100.0	0.0		tcb1/tcb1			
200	COLORADO-M	SEMILLAS RICA	100.0	0.0		tcb1/tcb1			
201	GRANO-DE-ORO	SEMILLAS RICA	100.0	0.0		tcb1/tcb1			
202	HOJA-DE-PLATA	SEMILLAS RICA	100.0	0.0		tcb1/tcb1			

			Promedios probador	Promedios p	robador hembra	
No.	Institución/Empresa	Accesión ²	macho recesivo‡	dominant	e‡ (<i>Tcb1-S/-</i>)	Alelos detectados
			(ga1/ga1 tcb1/tcb1)	Lug03xTIC1.1 ³	CIMMyTxTIC1.1 ⁴	
203	PALOMINO	SEMILLAS RICA	100.0	0.0		tcb1/tcb1
204	TORDILLO	SEMILLAS RICA	100.0	0.0		tcb1/tcb1
205	NK-1822	SYNGENTA	100.0	0.0		tcb1/tcb1
206	NK-1851	SYNGENTA	100.0	0.0		tcb1/tcb1
207	NK-83NS-A	SYNGENTA	99.5	0.0		tcb1/tcb1
208	NK-MURANO	SYNGENTA	100.0	0.0		tcb1/tcb1
209	TAYLOR-170A	TAYLOR	100.0	0.0		tcb1/tcb1
210	QT-318	TROPICO SEEDS	100.0	0.0		tcb1/tcb1
211	QT-FOLIUS(H-562)	TROPICO SEEDS	100.0	0.0		tcb1/tcb1
212	UDEG-CS-BLANCA	UDEG	100.0	0.0		tcb1/tcb1
213	UDEG-QPM06	UDEG	100.0	0.0	•	tcb1/tcb1
214	EOLO	UNISEM	100.0	0.0		tcb1/tcb1
215	LOGOS	UNISEM	100.0	0.0		tcb1/tcb1
216	TRITON	UNISEM	100.0	0.0		tcb1/tcb1
217	ZR-22	ZARCO	100.0	0.0		tcb1/tcb1

² ID cultivares comerciales; [‡] = Promedios de porcentajes; ³ LUG03xW22-TIC-1.1; ⁴ (M-ILL-G9BxP87C5)xW22-TIC-1.1.

En resumen los cultivares comerciales público y privado de maíz que se siembran en México, no contienen alelos de incompatibilidad del locus *tcb1*.

4.3. Razas Mexicanas

La prueba de normalidad señaló que los datos con el probador homocigoto recesivo y probador heterocigoto *Tcb1-S*, presentaron normalidad con valores de probabilidad no significativos de 0.3448 y 0.544, respectivamente (el alelo *Tcb1-S* con datos transformados). Los datos con el probador homocigote *Ga1-S* presentó valores altamente significativos (Cuadro 30).

Cuadro 30. Pruebas de normalidad de los datos de campo y transformaciones de las razas Mexicanas de los sistemas de incompatibilidad *ga1* y *tcb1*.

Probador	N	Datos sin transformar	valor de p	$Y=\sqrt{(Y+1)}$	valor de p	Y'=1/(Y+1)	valor de p
ga1	632	0.945	0.3448 ns	-1.727	0.0841 ns	8.270	0.0000 **
Ga1-S	367	-10.076	0.0000 **	-11.340	0.0000 **	13.409	0.0000 **
Tcb1-S	205	2.084	0.0372 **	0.607	0.5440 ns	3.868	0.0001 **

N= número de muestras

El análisis de varianza con el probador homocigoto recesivo fue con los datos originales, al igual que para el alelo dominante Ga1-S sin que mediara transformación alguna que lograra la normalidad de los datos, en cambio para el caso del probador Tcb1-S/- el análisis de varianza fue con los datos transformados y se denominó Tcb1-S RAÍZ+1.

4.3.1. Locus *ga1*

Para el estudio del sistema de incompatibilidad *ga1* fueron evaluadas 184 accesiones representativas de 56 razas Mexicanas. El análisis de varianza presentó diferencias altamente significativas para las fuentes de variación tanto entre como dentro de razas para el promedio del llenado de grano en mazorca (Cuadro 31), con un valor de R² igual o superior al 0.9 considerado excelente, y un coeficiente de variación del 34 y 16% para los probadores homocigotos *ga1* y *Ga1-S*, respectivamente.

Cuadro 31. Análisis de varianza del sistema de incompatibilidad *ga1* en razas Mexicanas de maíz con los probadores recesivo y dominante (*Ga1-S*), durante los años 2005 a 2009 en los campos experimentales del CUCBA.

	Proba	dor macho r	ecesivo	Proba	Probador hembra dominante						
		(ga1/ga1)		<u></u>	(Ga1-S/Ga1-S)						
FV	GL	CM	Pr > F	GL	CM	Pr > F					
Raza	57	12408.74	<.0001 **	\$ 56	4241.30	<.0001	**				
Accesiones(Raza)	155	1620.74	<.0001 **	154	508.62	<.0001	**				
Error	419	268.63		156	180.76						
Total	631			366							
CV		34.18			16.18						
R^2		0.90			0.92						

Donde: FV= Fuente de variación; GL= grados de libertad; CM= Cuadrado medio; ns= no significativo; **= altamente significativo al 0.01 de probabilidad; CV=coeficiente de variación; R²= coeficiente de determinación.

Los promedios de llenado de grano en mazorca en las razas Mexicanas cuando fueron polinizadas con probador macho recesivo, fueron arriba del 80%, lo que indica predominancia de los alelos Gal-m y gal, a excepción de unas pocas razas con promedios de llenado de grano en mazorca menores al 15% (ELOTES-OCCIDENTALES y MAÍZ-DULCE, con 10.18 y 1.94% de llenado de grano en mazorca). Cuando la prueba de Dunnett se aplicó usando el testigo igual a cero, presentó diferencias altamente significativas para todas las razas Mexicanas siendo el testigo control MAÍZ-DULCE con 1.94% de llenado de grano en mazorca (Cuadro 32). Cuando las razas Mexicanas recibieron grano de polen de los probadores macho recesivo, la prueba de Dunnett usando como testigo control ARROCILLO-AMARILLO (con 100% llenado de grano) sólo señaló diferentes a las BOLITA, CHAPALOTE, DULCILLO-DEL-NOROESTE, ELOTERO-DE-SINALOA, ELOTES-OCCIDENTALES, MAÍZ-DULCE. ELOTES. NEGRITO. PALOMERO-DE-CHIHUAHUA y REVENTADOR, éstos dos últimos con 68.52 y 31.04% del llenado de grano en mazorca (Cuadro 32).

Cuadro 32. Promedios de la prueba de Dunnett para la variable llenado de grano en mazorca de las razas Mexicanas con probador macho recesivo y probadores hembras (*Ga1-S/Ga1-S* y *Tcb1-S/-*) en los campos experimentales del CUCBA.

	Probador macho recesivo (ga1/ga1 tcb1/tcb1)				Probador hembra dominante (Ga1-S/Ga1-S)				Probador hembra dominante (<i>Tcb1-S/-</i>)	
Comparación Razas ⁵	(100% grano) Dif. ÷ Medias	p	(0% grano) Dif. ÷ Medias	p	(0% grano) Dif. ÷ Medias) p	(100% grano) Dif. ÷ Medias	p	(0% grano) Dif. ÷ Medias	p
ANCHO	0.0	ns	98.058	*	56.0	*	-42.74	*	0.0	ns
APACHITO	-16.667	ns	81.392	*	26.667	ns	-72.073	*	0.0	ns
ARROCILLO-AMARILLO (100% ga1)	<u>100</u>	-	98.058	*	75.0	*	-23.74	ns	1.28	ns
AZUL (0% Ga1-S)	-10.625	ns	87.433	*	<u>0.0</u>	-	-98.74	*	0.0	ns
BOFO	-26.913	ns	71.145	*	92.609	*	-6.131	ns	4.52	ns
BOFO(COREÑO)	-37.5	ns	60.558	*	2.857	ns	-95.883	*	-	-
BOLITA	-39.965	*	58.093	*	96.118	*	-2.622	ns	4.77	ns
CACAHUACINTLE	0.0	ns	98.058	*	71.333	*	-27.407	*	3.46	ns
CELAYA	-1.515	ns	96.543	*	67.5	*	-31.24	*	0.0	ns
CHALQUEÑO	-12.778	ns	85.28	*	97.333	*	-1.407	ns	0.79	ns
CHAPALOTE	-60.166	*	37.892	*	97.607	*	-1.133	ns	2.86	ns
COMITECO	0.0	ns	98.058	*	94.0	*	-4.74	ns	0.0	ns
COMPLEJO-SERRANO-DE-JALISCO	-16.0	ns	82.058	*	93.333	*	-5.407	ns	4.57	ns
CONEJO	0.0	ns	98.058	*	100.0	*	1.26	ns	1.74	ns
CÓNICO (0% Tcb1-S)	-5.875	ns	92.183	*	87.125	*	-11.615	ns	<u>0.0</u>	-
CÓNICO-NORTEÑO	-20.0	ns	78.058	*	100.0	*	1.26	ns	1.32	ns
COSCOMATEPEC	-6.667	ns	91.392	*	100.0	*	1.26	ns	0.0	ns
CRISTALINO-DE-CHIHUAHUA	-14.167	ns	83.892	*	0.0	ns	-98.74	*	0.0	ns
DULCILLO-DEL-NOROESTE	-64.764	*	33.294	*	93.111	*	-5.629	ns	5.83	ns
	APACHITO ARROCILLO-AMARILLO (100% ga1) AZUL (0% Ga1-S) BOFO BOFO(COREÑO) BOLITA CACAHUACINTLE CELAYA CHALQUEÑO CHAPALOTE COMITECO COMPLEJO-SERRANO-DE-JALISCO CONEJO CÓNICO (0% Tcb1-S) CÓNICO-NORTEÑO COSCOMATEPEC CRISTALINO-DE-CHIHUAHUA	Comparación Razas Comparación Razas Comparación Razas Dif. ÷ Medias	Comparación Razas ⁵	Comparación Razas Comp	Comparación Razas Comp	Comparación Razas Comp	Comparación Razas Comp	Comparación Razas Comp	Comparación Razas Comp	Comparación Razas³ Compara

 $^{^{5}}$ * = comparaciones significativas al nivel 0.05

		Probador macho recesivo (ga1/ga1 tcb1/tcb1)					nbra dominante S/Ga1-S)	Probador hembra dominante (<i>Tcb1-S/-</i>)			
		(100% grano)		(0% grano))	(0% grano)		(100% grano)		(0% grano)	
No.	Comparación Razas ⁵	Dif. ÷ Medias	p	Dif. ÷ Medias	p	Dif. ÷ Medias	p	Dif. ÷ Medias	p	Dif. ÷ Medias	p
20	DZIT-BACAL	0.0	ns	98.058	*	83.35	*	-15.39	ns	0.0	ns
21	ELOTERO-DE-SIN/ELOTES-OCC.	-12.5	ns	85.558	*	60.0	*	-38.74	ns	2.32	ns
22	ELOTERO-DE-SINALOA	-40.0	*	58.058	*	90.0	*	-8.74	ns	0.48	ns
23	ELOTES	-70.186	*	27.873	*	100.0	*	1.26	ns	6.28	ns
24	ELOTES-CÓNICOS	-26.668	ns	71.39	*	97.0	*	-1.74	ns	2.79	ns
25	ELOTES-OCCIDENTALES (98.74% Ga1-S)	-87.872	*	10.186	*	98.74	*	<u>98.74</u>		7.249	*
26	GORDO	0.0	ns	98.058	*	0.0	ns	-98.74	*	0.62	ns
27	GUINO	-	-	-	-	72.72	*	-26.02	*	-	-
28	GUINO(REVENTADOR)	0.0	ns	98.058	*	-	-	-	-	-	-
29	HARINOSO-DE-OCHO	-13.333	ns	84.725	*	18.0	ns	-80.74	*	0.0	ns
30	JALA	-4.953	ns	93.105	*	20.0	ns	-78.74	*	0.0	ns
31	MAÍZ-BLANDO-DE-SONORA	-3.03	ns	95.028	*	56.65	*	-42.09	*	0.0	ns
32	MAÍZ-DULCE (0% ga1)	-98.058	*	<u>1.942</u>	-	98.5	*	-0.24	ns	8.71	*
33	MOTOZINTECO	-2.223	ns	95.835	*	100.0	*	1.26	ns	6.14	ns
34	MOUNTAIN-YELLOW	-4.167	ns	93.892	*	84.667	*	-14.073	ns	1.00	ns
35	MUSHITO(MICHOACAN)	0.0	ns	98.058	*	89.8	*	-8.94	ns	3.30	ns
36	NAL-TEL	-3.333	ns	94.725	*	100.0	*	1.26	ns	0.0	ns
37	NAL-TEL-DE-ALTURA	0.0	ns	98.058	*	100.0	*	1.26	ns	0.0	ns
38	NEGRITO	-42.141	*	55.917	*	97.5	*	-1.24	ns	7.54	*
39	NEGRO-DE-CHIMALTENANGO	0.0	ns	98.058	*	90.0	*	-8.74	ns	0.0	ns
40	OLOTILLO	-13.333	ns	84.725	*	100.0	*	1.26	ns	0.0	ns
41	OLOTÓN	0.0	ns	98.058	*	83.35	*	-15.39	ns	3.07	ns
42	ONAVEÑO	0.0	ns	98.058	*	80.0	*	-18.74	ns	0.44	ns

	Probador macho recesivo Probador hembra dominante (ga1/ga1 tcb1/tcb1) (Ga1-S/Ga1-S)				Probador hembra dominante (<i>Tcb1-S/-</i>)						
No	Comparación Razas ⁵	(100% grano) Dif. ÷ Medias	p	(0% grano) Dif. ÷ Medias	p	(0% grano) Dif. ÷ Medias	p	(100% grano) Dif. ÷ Medias	p	(0% grano) Dif. ÷ Medias	p
43	PALOMERO-DE-CHIHUAHUA	-68.523	*	29.535	*	77.727	*	-21.013	*	3.95	ns
44	PALOMERO-TOLUQUEÑO	-2.381	ns	95.677	*	98.4	*	-0.34	ns	3.08	ns
45	PEPITILLA	-2.777	ns	95.282	*	92.5	*	-6.24	ns	0.0	ns
46	RATÓN	0.0	ns	98.058	*	10.0	ns	-88.74	*	0.0	ns
47	REVENTADOR	-31.038	*	67.02	*	87.361	*	-11.379	ns	4.97	ns
48	TABLILLA-DE-OCHO	-8.89	ns	89.168	*	100.0	*	1.26	ns	1.32	ns
49	TABLONCILLO	-1.667	ns	96.392	*	41.714	*	-57.026	*	0.0	ns
50	TABLONCILLO-PERLA	-3.333	ns	94.725	*	30.0	ns	-68.74	*	0.0	ns
51	TEHUA	0.0	ns	98.058	*	100.0	*	1.26	ns	-	-
52	TEPECINTLE	-7.917	ns	90.142	*	98.667	*	-0.073	ns	0.0	ns
53	TUXPEÑO	-4.383	ns	93.675	*	45.838	*	-52.903	*	0.77	ns
54	TUXPEÑO-NORTEÑO	-7.407	ns	90.652	*	10.0	ns	-88.74	*	0.0	ns
55	VANDEÑO	0.0	ns	98.058	*	59.0	*	-39.74	*	0.87	ns
56	ZAMORANO-AMARILLO	-3.703	ns	94.355	*	20.6	ns	-78.14	*	0.0	ns
57	ZAPALOTE-CHICO	-6.727	ns	91.332	*	97.5	*	-1.24	ns	1.05	ns
58	ZAPALOTE-GRANDE	0.0	ns	98.058	*	100.0	*	1.26	ns	0.89	ns
* =	comparaciones significativas al nivel 0.05										
	GL error	419		419		156		156		83	
	CM error	268.631		268.631		180.757		180.757		6.022	
	Valor Critico de Dunnett	3.124		3.340		3.107		3.371		3.297	

Los promedios de llenado de grano en mazorca en las razas Mexicanas cuando se usó el probador con el alelo *Ga1-S*, homocigoto dominante, fueron superiores al 90% para la fuente de variación razas, lo que indica presencia de los alelos *Ga1-m* y *Ga1-S*. Pocas razas tuvieron promedios de llenado de grano en mazorca menores al 20%, entre ellas AZUL, BOFO (COREÑO), CRISTALINO-DE-CHIHUAHUA, GORDO, HARINOSO-DE-OCHO, JALA, RATÓN, TABLONCILLO-PERLA, TUXPEÑO-NORTEÑO y ZAMORANO-AMARILLO, además la prueba de Dunnett no detectó diferencias significativas en éstas razas, el resto son señaladas significativamente diferentes por Dunnett con el testigo control raza AZUL con 0.0% llenado de grano en mazorca (Cuadro 32).

Analizando los resultados anteriores, los criterios genéticos y acorde a lo observado en campo, se procedió a la detección de la presencia de alelos del locus *ga1* que a continuación se muestran en el Cuadro 33.

En ocho accesiones se presentaron diferencias de los alelos detectados por De la Cruz (2007) ANCHO (MOR-62), ARROCILLO-AMARILLO (VER-311), ELOTERO-DE-SINALOA (SIN-17), ELOTES-OCCIDENTALES (JRP-05095), HARINOSO-DE-OCHO (NAY-24), TABLONCILLO (JAL-43), TUXPEÑO (POP-21 y VER-39), y con tres de Cíntora (1963) MAÍZ-DULCE (MICH-15), REVENTADOR (NAY-15) y TEHUA (CHIS-229) del presente estudio (Cuadro 33). En el estudio de Cíntora (1963) *Ga* es equiparable a *Ga1-m* y *Ga^S* con *Ga1-S*. Las diferencias detectadas con Cíntora (1963) y con De la Cruz (2007) mostraron variación en sólo uno de los dos alelos propuestos en el presente estudio.

Cuadro 33. Propuesta de alelos detectados del sistema de incompatibilidad gal, para razas Mexicanas y accesiones, durante los años 2007 a 2009 en los campos experimentales del CUCBA.

No.	Raza	Accesión ⁶	Promedios probador macho recesivo [‡]	Promedios probador hembra dominante ^{‡‡}	Alelos detectados	Diferencias otros estudios [†]
			(ga1/ga1 tcb1/tcb1)	(Ga1-S/Ga1-S)		
1	ANCHO	MOR-62	100.0	56.0	Ga1-m	+ (Ga1-m, ga1)
2	APACHITO	CHIH-166	85.7	25.0	Ga1-m, ga1	++
3	ARROCILLO-AMARILLO	VER-311	100.0	75.0	Ga1-m	+ (Ga1-m, ga1)
4	AZUL	CHIH-147	83.0	0.0	ga1	++
5	BOFO	DGO-100	100.0	90.0	Ga1-m	
6	BOFO	DGO-163	54.6	100.0	Ga1-m, Ga1-S	
7	BOFO	DGO-191	86.7	50.0	Ga1-m, ga1	
8	BOFO	DGO-94	91.1	100.0	Ga1-m	
9	BOFO	DGO-95	82.9	100.0	Ga1-m	
10	BOFO	JAL-289	0.0	100.0	Ga1-S	++
11	BOFO	NAY-191	100.0	100.0	Ga1-m	
12	BOFO	NAY-196	50.4	90.0	Ga1-m, Ga1-S	
13	BOFO	NAY-201	100.0	92.0	Ga1-m	
14	BOFO	NAY-222	100.0	93.0	Ga1-m	
15	BOFO	NAY-242	92.9	100.0	Ga1-m	
16	BOFO(COREÑO)	JRP-05015	66.7	5.0	ga1	++

ID de colecta de maíz; [‡] = Promedios de porcentajes; ^{‡‡} = Promedios de porcentajes de NC354xW22P4830 y/6 NC354xW22P5270; + = Diferencias del genotipo propuesto por De la Cruz (2007); ++ = Igual genotipo propuesto por De la Cruz (2007); y ç = Diferencias del genotipo propuesto por Cíntora (1963); $\zeta \zeta = \text{Igual genotipo propuesto por Cíntora (1963)}.$

No.	Raza	Accesión ⁶	Promedios probador macho recesivo [‡]	Promedios probador hembra dominante ^{‡‡}	Alelos detectados	Diferencias otros estudios [†]
			(ga1/ga1 tcb1/tcb1)	(Ga1-S/Ga1-S)		
17	BOFO(COREÑO)	JRP-RPB-05009	50.0	0.0	ga1	++
18	BOLITA	OAX-180	68.6	100.0	Ga1-m, Ga1-S	
19	BOLITA	OAX-221	63.5	97.0	Ga1-m	
20	BOLITA	OAX-28	82.1	90.0	Ga1-m	
21	BOLITA	OAX-40	48.2	100.0	Ga1-S, Ga1-m	++
22	BOLITA	OAX-44	41.3	90.0	Ga1-S, Ga1-m	
23	BOLITA	OAX-803	52.9	100.0	Ga1-S, Ga1-m	++
24	CACAHUACINTLE	MEX-7	100.0	91.0	Ga1-m	++, çç
25	CELAYA	GTO-36	100.0	35.0	ga1, Ga1-m	++
26	CELAYA	GTO-88	95.2	100.0	Ga1-m	++
27	CHALQUEÑO	COMP-CHALQ	100.0	100.0	Ga1-m	
28	CHALQUEÑO	MEX-208	75.7	100.0	Ga1-m	
29	CHAPALOTE	DGO-111	22.7	100.0	Ga1-S, Ga1-m	
30	CHAPALOTE	DGO-115	16.3	100.0	Ga1-S, Ga1-m	
31	CHAPALOTE	SIN-2	16.9	100.0	Ga1-S	
32	CHAPALOTE	SIN-35	18.9	100.0	Ga1-S, Ga1-m	
33	CHAPALOTE	SIN-50	40.0	100.0	Ga1-S, Ga1-m	
34	CHAPALOTE	SIN-6	77.4	87.8	Ga1-m	
35	CHAPALOTE	SIN-65	52.8	100.0	Ga1-m, Ga1-S	
36	CHAPALOTE	SINA-35	22.1	100.0	Ga1-S, Ga1-m	

No.	Raza	Accesión ⁶	Promedios probador macho recesivo [‡]	Promedios probador hembra dominante ^{‡‡}	Alelos detectados	Diferencias otros estudios [†]
			(ga1/ga1 tcb1/tcb1)	(Ga1-S/Ga1-S)		
37	CHAPALOTE	SON-93	79.2	94.0	Ga1-m	
38	COMITECO	CHIS-39	100.0	94.0	Ga1-m	++
39	COMPLEJO-SERRANO-DE-JALISCO	JAL-173	86.7	95.0	Ga1-m	++
40	CONEJO	GRO-17	100.0	100.0	Ga1-m	++
41	COSCOMATEPEC	VER-404	93.3	100.0	Ga1-m	++
42	CRISTALINO-DE-CHIHUAHUA	CHIH-128	87.9	0.0	ga1	++
43	CÓNICO	MEX-108	100.0	81.0	Ga1-m	++
44	CÓNICO	POP-902	100.0	100.0	Ga1-m	++
45	CÓNICO	TLAX-151	90.4	85.5	Ga1-m	++
46	CÓNICO-NORTEÑO	GTO-23	93.1	100.0	Ga1-m	++
47	DULCILLO-DEL-NOROESTE	CHIH-235	94.3	72.2	Ga1-m	
48	DULCILLO-DEL-NOROESTE	SIN-25	18.8	100.0	Ga1-S	++
49	DULCILLO-DEL-NOROESTE	SIN-33	2.0	100.0	Ga1-S	
50	DULCILLO-DEL-NOROESTE	SIN-34	20.0	100.0	Ga1-S, Ga1-m	
51	DULCILLO-DEL-NOROESTE	SIN-39	36.7	100.0	Ga1-S	
52	DULCILLO-DEL-NOROESTE	SIN-53	82.4	100.0	Ga1-S	
53	DULCILLO-DEL-NOROESTE	SIN-79	24.6	76.0	Ga1-S, Ga1-m	
54	DULCILLO-DEL-NOROESTE	SIN-88	5.0	100.0	Ga1-S	
55	DULCILLO-DEL-NOROESTE	SON-124	28.3	100.0	Ga1-S, Ga1-m	
56	DULCILLO-DEL-NOROESTE	SON-164	0.0	100.0	Ga1-S	

No.	Raza	Accesión ⁶	Promedios probador macho recesivo [‡]	Promedios probador hembra dominante ^{‡‡}	Alelos detectados	Diferencias otros estudios [†]
	DOWN DAGAY	000000	(gal/gal tcbl/tcbl)	(Ga1-S/Ga1-S)		
57	DZIT-BACAL	QR00-20	100.0	83.3	Ga1-m	++
58	ELOTERO-DE-SIN/ELOTES-OCC.	M08036-(COL-8)	90.9	60.0	Ga1-S, ga1	
59	ELOTERO-DE-SINALOA	JSG-RMM-LCL-579	90.6	100.0	Ga1-m	
60	ELOTERO-DE-SINALOA	M08029-(COL-1)	100.0	50.0	Ga1-m	
61	ELOTERO-DE-SINALOA	SIN-17	31.5	100.0	Ga1-S, Ga1-m	+ (Ga1-S, ga1)
62	ELOTES	JSG-RMM-LCL-569	13.4	100.0	Ga1-S, Ga1-m	
63	ELOTES	JSG-RMM-LCL-570	51.0	100.0	Ga1-m, Ga1-S	
64	ELOTES-CÓNICOS	PUE-510	93.8	100.0	Ga1-m	++
65	ELOTES-CÓNICOS	Sergio-Rojo	62.5	100.0	Ga1-m	
66	ELOTES-OCCIDENTALES	DGO-169	100.0	100.0	Ga1-m	
67	ELOTES-OCCIDENTALES	FZ-084	0.0	100.0	Ga1-S	
68	ELOTES-OCCIDENTALES	FZ-089	0.0	100.0	Ga1-S	
69	ELOTES-OCCIDENTALES	FZ-109	7.8	100.0	Ga1-S	
70	ELOTES-OCCIDENTALES	JACV-05053	12.7	100.0	Ga1-S	
71	ELOTES-OCCIDENTALES	JAL-315	64.3	100.0	Ga1-m, Ga1-S	
72	ELOTES-OCCIDENTALES	JAL-54	100.0	100.0	Ga1-m	
73	ELOTES-OCCIDENTALES	JAL-633	0.0	100.0	Ga1-S	++
74	ELOTES-OCCIDENTALES	JAL-71	0.0	100.0	Ga1-S	
75	ELOTES-OCCIDENTALES	JRP-05089	0.0	99.0	Ga1-S	++
76	ELOTES-OCCIDENTALES	JRP-05095	14.4	98.0	Ga1-S, Ga1-m	+ (<i>Ga1-S</i>)

No.	Raza	Accesión ⁶	Promedios probador macho recesivo [‡]	Promedios probador hembra dominante ^{‡‡}	Alelos detectados	Diferencias otros estudios [†]
77	ELOTES-OCCIDENTALES	JSG-LCL-JGRF-588	(ga1/ga1 tcb1/tcb1) 2.1	(Ga1-S/Ga1-S) 100.0	Ga1-S	
78	ELOTES-OCCIDENTALES	JSG-LCL-JGRF-589	0.7	100.0	Ga1-S	
79	ELOTES-OCCIDENTALES	M-06123	29.0	100.0	Ga1-S, ga1	
80	ELOTES-OCCIDENTALES	M-06129	6.6	100.0	Ga1-S, Ga1-m	
81	ELOTES-OCCIDENTALES	M-06131	52.7	100.0	Ga1-S	
82	ELOTES-OCCIDENTALES	M-06149	10.0	100.0	Ga1-S	
83	ELOTES-OCCIDENTALES	M-06181	2.2	100.0	Ga1-S	
84	ELOTES-OCCIDENTALES	M-06187	0.8	100.0	Ga1-S	
85	ELOTES-OCCIDENTALES	M-0619	0.5	80.0	Ga1-S	
86	ELOTES-OCCIDENTALES	M-0625	10.4	100.0	Ga1-S	
87	ELOTES-OCCIDENTALES	M-0633	0.7	100.0	Ga1-S	
88	ELOTES-OCCIDENTALES	M-0635	0.0	100.0	Ga1-S	
89	ELOTES-OCCIDENTALES	M-0642	0.7	100.0	Ga1-S	
90	ELOTES-OCCIDENTALES	M-0645	0.0	100.0	Ga1-S	
91	ELOTES-OCCIDENTALES	M-0651	4.8	100.0	Ga1-S, Ga1-m	
92	ELOTES-OCCIDENTALES	M-0654	0.0	100.0	Ga1-S	
93	ELOTES-OCCIDENTALES	M-0663	0.8	100.0	Ga1-m, Ga1-S	
94	ELOTES-OCCIDENTALES	M-0674	1.4	100.0	Ga1-S	
95	ELOTES-OCCIDENTALES	M-0691	13.1	92.5	Ga1-S	
96	ELOTES-OCCIDENTALES	M-0697	33.3	100.0	Ga1-S	

No.	Raza	Accesión ⁶	Promedios probador macho recesivo [‡]	Promedios probador hembra dominante ^{‡‡}	Alelos detectados	Diferencias otros estudios [†]
			(ga1/ga1 tcb1/tcb1)	(Ga1-S/Ga1-S)		
97	ELOTES-OCCIDENTALES	TC-100	0.0	100.0	Ga1-S	
98	ELOTES-OCCIDENTALES	TC-160	7.6	80.0	Ga1-S, ga1	
99	ELOTES-OCCIDENTALES	TC-164	0.8	100.0	Ga1-S	
100	ELOTES-OCCIDENTALES	TC-244	4.5	100.0	Ga1-S	
101	ELOTES-OCCIDENTALES	TC-245	37.3	100.0	Ga1-S	
102	ELOTES-OCCIDENTALES	ZAC-180	0.0	100.0	Ga1-S	
103	ELOTES-OCCIDENTALES	ZAC-210	26.4	100.0	Ga1-m, Ga1-S	
104	GORDO	CHIH-160	100.0	0.0	ga1	++
105	HARINOSO-DE-OCHO	NAY-24	83.5	18.0	ga, Ga1-m	+ (ga1)
106	JALA	NAY-54	96.0	0.0	ga1	++
107	JALA	NAY-6	93.8	20.0	ga1, Ga1-m	++
108	MAÍZ-BLANDO-DE-SONORA	SIN-7	95.2	56.7	Ga1-m, ga1	++
109	MAÍZ-DULCE	GTO-100	1.0	100.0	Ga1-S	Çç
110	MAÍZ-DULCE	GTO-141	2.2	100.0	Ga1-S	
111	MAÍZ-DULCE	GTO-181	1.2	100.0	Ga1-S	
112	MAÍZ-DULCE	GTO-190	2.0	100.0	Ga1-S	
113	MAÍZ-DULCE	JAL-188	0.0	100.0	Ga1-S	çç
114	MAÍZ-DULCE	JAL-204	0.0	100.0	Ga1-S	çç
115	MAÍZ-DULCE	JAL-300	0.0	80.0	Ga1-S, ga1	
116	MAÍZ-DULCE	JAL-304	0.8	100.0	Ga1-S	++

No.	Raza	Accesión ⁶	Promedios probador macho recesivo [‡]	Promedios probador hembra dominante ^{‡‡}	Alelos detectados	Diferencias otros estudios [†]
			(ga1/ga1 tcb1/tcb1)	(Ga1-S/Ga1-S)		
117	MAÍZ-DULCE	JAL-322	0.0	100.0	Ga1-S	
118	MAÍZ-DULCE	JAL-78	0.0	100.0	Ga1-S	çç
119	MAÍZ-DULCE	JRP-05010	0.0	100.0	Ga1-S	++
120	MAÍZ-DULCE	JRP-05046	0.0	90.0	Ga1-S	++
121	MAÍZ-DULCE	M-06108	4.6	100.0	Ga1-S	
122	MAÍZ-DULCE	M-06109	2.7	100.0	Ga1-S	
123	MAÍZ-DULCE	M-06124	0.0	100.0	Ga1-S	
124	MAÍZ-DULCE	M-06126	0.4	100.0	Ga1-S	
125	MAÍZ-DULCE	M-06127	1.8	98.0	Ga1-S	
126	MAÍZ-DULCE	M-06173	0.0	100.0	Ga1-S	
127	MAÍZ-DULCE	M-06193	0.0	100.0	Ga1-S	
128	MAÍZ-DULCE	M-0630	0.0	100.0	Ga1-S	
129	MAÍZ-DULCE	MICH-15	0.0	100.0	Ga1-S	$\varsigma (Ga \approx Ga1\text{-}m)$
130	MAÍZ-DULCE	TC-168	16.7	100.0	Ga1-S	
131	MAÍZ-DULCE	TC-169	11.0	100.0	Ga1-S	
132	MAÍZ-DULCE	TC-415	10.0	100.0	Ga1-S	
133	MAÍZ-DULCE	TC-416	1.4	100.0	Ga1-S	
134	MAÍZ-DULCE	TC-420	0.7	100.0	Ga1-S	
135	MAÍZ-DULCE	ZAC-182	0.0	100.0	Ga1-S	
136	MOTOZINTECO	CHIS-650	96.8	100.0	Ga1-m	++

No.	Raza	Accesión ⁶	Promedios probador macho recesivo [‡]	Promedios probador hembra dominante ^{‡‡}	Alelos detectados	Diferencias otros estudios [†]
			(ga1/ga1 tcb1/tcb1)	(Ga1-S/Ga1-S)		
137	MOUNTAIN-YELLOW	JAL-127	94.4	83.5	Ga1-m	++
138	MUSHITO(MICHOACAN)	MICH-328	100.0	90.5	Ga1-m	++
139	NAL-TEL	YUC-148	95.3	100.0	Ga1-m	++
140	NAL-TEL-DE-ALTURA	OAX-301	100.0	100.0	Ga1-m	++
141	NEGRITO	OAX-117	43.4	97.2	Ga1-m, Ga1-S	
142	NEGRITO	OAX-26	82.4	100.0	Ga1-m	++
143	NEGRO-DE-CHIMALTENANGO	CHIS-230	100.0	90.0	Ga1-m	++
144	OLOTILLO	CHIS-81	78.2	100.0	Ga1-m	++
145	OLOTÓN	CHIS-684	100.0	83.3	Ga1-m	++
146	ONAVEÑO	SON-155	100.0	80.0	Ga1-m	++
147	PALOMERO-DE-CHIHUAHUA	CHIH-135	3.7	100.0	Ga1-S	++
148	PALOMERO-DE-CHIHUAHUA	CHIH-148	26.0	77.5	Ga1-S, Ga1-m	
149	PALOMERO-DE-CHIHUAHUA	CHIH-150	30.0	100.0	Ga1-S, Ga1-m	
150	PALOMERO-DE-CHIHUAHUA	CHIH-201	100.0	0.0	ga1	
151	PALOMERO-DE-CHIHUAHUA	CHIH-219	59.2	100.0	Ga1-m, Ga1-S	
152	PALOMERO-TOLUQUEÑO	MEX-210	96.7	96.0	Ga1-m	++, çç
153	PALOMERO-TOLUQUEÑO	MEX-5	100.0	100.0	Ga1-m	++, çç
154	PEPITILLA	GRO-335	96.9	100.0	Ga1-m	++
155	RATÓN	TAMS-66	100.0	10.0	ga1	++
156	REVENTADOR	DGO-126	4.5	100.0	Ga1-S	

No.	Raza	Accesión ⁶	Promedios probador macho recesivo [‡]	Promedios probador hembra dominante ^{‡‡}	Alelos detectados	Diferencias otros estudios [†]
			(ga1/ga1 tcb1/tcb1)	(Ga1-S/Ga1-S)		
157	REVENTADOR	GRO-217	100.0	90.0	Ga1-m	
158	REVENTADOR	JAL-161	83.3	88.0	Ga1-m	
159	REVENTADOR	M08032-(COL-4)	55.0	100.0	Ga1-m	
160	REVENTADOR	MICH-157	100.0	97.0	Ga1-m	
161	REVENTADOR	MICH-170	100.0	100.0	Ga1-m	
162	REVENTADOR	NAY-15	24.0	92.5	Ga1-S, Ga1-m	$\varsigma (GaS \approx Ga1-S)$
163	REVENTADOR	NAY-39	0.0	100.0	Ga1-S	++
164	REVENTADOR	SIN-19	82.4	100.0	Ga1-m, Ga1-S	
165	REVENTADOR	SIN-55	89.5	60.0	Ga1-m, ga1	
166	REVENTADOR	SIN-60	83.9	0.0	ga1	
167	REVENTADOR	SIN-98	82.1	60.0	Ga1-m, ga1	
168	REVENTADOR	SON-168	80.0	100.0	Ga1-m	
169	REVENTADOR	SON-87	80.8	100.0	Ga1-m	
170	TABLILLA-DE-OCHO	JAL-306	87.4	100.0	Ga1-m	++
171	TABLONCILLO	JAL-263	95.0	0.0	ga1	++
172	TABLONCILLO	JAL-43	100.0	10.0	ga1	+ (Ga1-m, ga1)
173	TABLONCILLO-PERLA	NAY-12	95.0	30.0	gal, Gal-m	++
174	TEHUA	CHIS-229	100.0	100.0	Ga1-m	++, ç (gal)
175	TEPECINTLE	CHIS-26	89.4	100.0	Ga1-m	++, çç
176	TUXPEÑO	POP-21	100.0	20.0	ga1, Ga1-m	(ga1)

No.	Raza	Accesión ⁶	Promedios probador macho recesivo [‡]	Promedios probador hembra dominante ^{‡‡}	Alelos detectados	Diferencias otros estudios [†]
			(ga1/ga1 tcb1/tcb1)	(Ga1-S/Ga1-S)		
177	TUXPEÑO	POP-502	86.0	83.3	Ga1-m	++
178	TUXPEÑO	VER-39	94.1	30.0	gal, Gal-m	(gal)
179	TUXPEÑO-NORTEÑO	CHIH-13	89.5	10.0	ga1	++
180	VANDEÑO	CHIS-25	100.0	74.0	Ga1-m, ga1	++
181	ZAMORANO-AMARILLO	MICH-5	94.7	0.0	ga1	++
182	ZAPALOTE-CHICO	CHIS-662	90.5	100.0	Ga1-m	++
183	ZAPALOTE-CHICO	OAX-48	90.6	95.0	Ga1-m	++
184	ZAPALOTE-GRANDE	CHIS-224	100.0	100.0	Ga1-m	++

⁶ = ID de colecta de maíz; [‡]= Promedios de porcentajes; ‡‡ = Promedios de porcentajes de NC354xW22P4830 y/ó NC354xW22P5270; + = Diferencias del genotipo propuesto por De la Cruz (2007); ++ = Igual genotipo propuesto por De la Cruz (2007); ç = Diferencias del genotipo propuesto por Cíntora (1963); çç = Igual genotipo propuesto por Cíntora (1963).

El alelo *Ga1-S*, responsable de la incompatibilidad no-recíproca, se detectó con el 53.8% de 184 accesiones evaluadas, *Ga1-m*, compatible con cualquier genotipo del locus *ga1*, estuvo presente en el 55.43% de las accesiones, mientras que el 15.76% con el alelo *ga1* (Cuadro 34). Sólo dos razas Mexicanas en casi la totalidad de sus accesiones, ELOTES-OCCIDENTALES y MAÍZ-DULCE, contienen el alelo dominante en estado homocigoto (*Ga1-S*), junto con otras cinco razas Mexicanas en al menos una de sus accesiones, BOFO, CHAPALOTE, DULCILLO-DEL-NOROESTE, PALOMERO-DE-CHIHUAHUA y REVENTADOR. Para el alelo recesivo *ga1* las accesiones de ocho razas Mexicanas fueron homocigotas recesivas (*ga1/ga1*) y fueron: AZUL, BOFO (COREÑO), CRISTALINO-DE-CHIHUAHUA, GORDO, RATÓN, TABLONCILLO, TUXPEÑO-NORTEÑO y ZAMORANO-AMARILLO; además en otras tres razas fueron homocigotas recesivas (*ga1/ga1*) en al menos una de sus accesiones JALA, PALOMERO-DE-CHIHUAHUA y REVENTADOR. De la Cruz (2007) reportó en 71 accesiones que el 48% fueron *Ga1-m/Ga1-m*, el 18% con *ga1/ga1* y sólo 21% con el alelo *Ga1-S*, además en estado heterocigoto *Ga1-m/ga1* con 13% contra el 6.52% del presente estudio. Los años de evaluación realizados durante 2007 a 2009, contribuyeron a ampliar el número de muestras de las razas.

Cuadro 34. Porcentaje de alelos detectados del locus *ga1* en las razas Mexicanas evaluadas durante los años de siembra 2005 a 2009, en los campos experimentales del CUCBA.

Alelo(s)	Accesiones	% de accesiones	Suma de a	lelos detectados (%)
gal	13	7.07	15.761	(ga1)
ga1, Ga1-m	6	3.26		
Gal-m, gal	6	3.26		
Ga1-m	60	32.61	55.435	(Ga1-m)
Ga1-m, Ga1-S	11	5.98		
Ga1-S, ga1	4	2.17		
Ga1-S, Ga1-m	19	10.33		
Ga1-S	65	35.33	53.804	(<i>Ga1-S</i>)
Totales	184	100%	125%	

4.3.2. Locus *tcb1*

El análisis de varianza para el locus *tcb1* sólo presentó diferencias altamente significativas para la fuente de variación entre razas no así para la fuente dentro de razas (Cuadro 35), y un coeficiente de variación del 46.32%, además de un valor de R² del 0.834 considerado buena la respuesta de los datos al modelo propuesto.

Cuadro 35. Análisis de varianza del locus de incompatibilidad *tcb1* en razas Mexicanas de maíz, durante el año 2009 en los campos experimentales del CUCBA.

FV	GL	Tcb1-S RAÍZ- CM	+1 (Promedio) Pr > F	
Raza	54	38.186	<.0001	**
Accesiones(Raza)	67	4.124	0.9989	ns
Error	83	6.022		
Total	204			
CV		46.32		
\mathbb{R}^2		0.834		

Donde: FV= Fuente de variación; GL= grados de libertad; CM= Cuadrado medio; ns= no significativo; **= altamente significativo al 0.01 de probabilidad; CV=coeficiente de variación; R²= coeficiente de determinación; Tcb1-S RAÍZ+1 (Promedio)= datos transformados: raíz cuadrada más uno.

Los promedios de llenado de grano en mazorca van desde 0% hasta 93.59% (Cuadro 36), existiendo variación entre razas y dentro de accesiones por cada raza.

Cuadro 36. Promedios en el llenado de grano en mazorca de las razas Mexicanas con probadores hembra del sistema de incompatibilidad *tcb1* en los campos experimentales del CUCBA.

8.27 0.00 70.71
0.00
0.00
0.00
70.71
39.33
21.21
0.00
3.30
27.26
0.28
0.00
0.00
5.03
32.06

No.	Raza	N^1	Promedio ²	Desv. Std.
22	ELOTERO-DE-SINALOA	3	1.67	2.89
23	ELOTES	1	52.00	•
24	ELOTES-CÓNICOS	4	18.75	22.50
25	ELOTES-OCCIDENTALES	52	72.83	34.47
26	GORDO	2	2.00	2.83
27	HARINOSO-DE-OCHO	1	0.00	•
28	JALA	2	0.00	0.00
29	MAÍZ-BLANDO-DE-SONORA	2	0.00	0.00
30	MAÍZ-DULCE	30	93.59	11.04
31	MOTOZINTECO	1	50.00	•
32	MOUNTAIN-YELLOW	2	4.00	5.66
33	MUSHITO(MICHOACAN)	1	17.50	•
34	NAL-TEL	2	0.00	0.00
35	NAL-TEL-DE-ALTURA	1	0.00	
36	NEGRITO	3	74.00	29.46
37	NEGRO-DE-CHIMALTENANGO	1	0.00	
38	OLOTILLO	1	0.00	
39	OLOTÓN	2	25.00	35.36
40	ONAVEÑO	2	1.25	1.77
41	PALOMERO-DE-CHIHUAHUA	3	33.97	40.37
42	PALOMERO-TOLUQUEÑO	4	29.28	47.83
43	PEPITILLA	2	0.00	0.00
44	RATÓN	2	0.00	0.00
45	REVENTADOR	6	50.42	50.90
46	TABLILLA-DE-OCHO	3	5.33	5.03
47	TABLONCILLO	5	0.00	0.00
48	TABLONCILLO-PERLA	2	0.00	0.00
49	TEPECINTLE	1	0.00	
50	TUXPEÑO	3	3.33	5.77
51	TUXPEÑO-NORTEÑO	2	0.00	0.00
52	VANDEÑO	1	2.50	
53	ZAMORANO-AMARILLO	1	0.00	•
54	ZAPALOTE-CHICO	5	5.86	11.35
55	ZAPALOTE-GRANDE	2	3.35	4.74

¹ N= cantidad de veces representado (por probadores y años); Promedio= promedio general de la variable llenado de grano en mazorca; Desv. Std.= desviación estándar; ²= datos originales.

A continuación se presenta en el Cuadro 37 la propuesta de alelos detectados del complejo de incompatibilidad del teocintle (TIC/-) para las razas Mexicanas de maíz del locus *tcb1*.

Cuadro 37. Propuesta de alelos detectados en el sistema de incompatibilidad *tcb1* para razas Mexicanas de maíz, año 2009 en los campos experimentales del CUCBA, con los probadores hembra LUG03xTIC1.1, CIMMyTxTIC1.1 y CIMMyTxTIC1.5.

No.	Raza	Accesión ⁷	Promedios probador macho recesivo‡	Promeo	Alelos detectados†		
			(ga1/ga1 tcb1/tcb1)	Lug03xTIC1.18	CIMMyTxTIC1.19	CIMMyTxTIC1.5 ¹⁰	
1	ANCHO	MOR-62	100.0	0.0			tcb1
2	APACHITO	CHIH-166	85.7		0.0		tcb1
3	ARROCILLO-AMARILLO	VER-311	100.0	0.0	11.7		tcb1
4	AZUL	CHIH-147	83.0	0.0	0.0		tcb1
5	BOFO	JAL-289	0.0	0.0		100.0	tcb1
6	BOLITA	OAX-40	48.2	2.8	66.7	60.0	tcb1
7	BOLITA	OAX-803	52.9	30.0	100.0	0.0	tcb1
8	CACAHUACINTLE	MEX-7	100.0		36.7	6.7	n.e.
9	CELAYA	GTO-36	100.0	0.0			tcb1
10	CELAYA	GTO-88	95.2	0.0			tcb1
11	CHALQUEÑO	COMP-CHALQ	100.0	5.0	6.3		tcb1
12	CHALQUEÑO	MEX-208	75.7	0.0	0.0		tcb1
13	CHAPALOTE	DGO-111	22.7	0.0			tcb1
14	CHAPALOTE	DGO-115	16.3		57.5		n.e.
15	CHAPALOTE	SIN-2	16.9	0.0	0.0		tcb1
16	CHAPALOTE	SIN-35	18.9		40.0	5.0	n.e.
17	CHAPALOTE	SINA-35	22.1		55.7		n.e.

ID de colecta de maíz; ‡ = Promedios de porcentajes; § = alelo de incompatibilidad en bajas frecuencias; † *n.e.*= no evaluado; LUG03xW22-TIC-1.1; (M-ILL-G9BxP87C5)xW22-TIC-1.1; (M-ILL-G9BxP87C5)xW22-TIC-1.5;

No.	Raza	Accesión ⁷	Promedios probador macho recesivo;	Promeo	lios probador hembra (Tcb1-S/-)	a dominante‡	Alelos detectados†
			(ga1/ga1 tcb1/tcb1)	Lug03xTIC1.18	CIMMyTxTIC1.19	CIMMyTxTIC1.5 ¹⁰	
18	COMITECO	CHIS-39	100.0	0.0	·	·	tcb1
19	COMPLEJO-SERRANO-DE-JALISCO	JAL-173	86.7		30.0		n.e.
20	CONEJO	GRO-17	100.0		6.7	6.3	n.e.
21	COSCOMATEPEC	VER-404	93.3	0.0			tcb1
22	CRISTALINO-DE-CHIHUAHUA	CHIH-128	87.9	0.0	0.0		tcb1
23	CÓNICO	POP-902	100.0	0.0		0.0	tcb1
24	CÓNICO	TLAX-151	90.4	0.0			tcb1
25	CÓNICO-NORTEÑO	GTO-23	93.1	0.0	6.0	10.0	tcb1
26	DULCILLO-DEL-NOROESTE	SIN-25	18.8	16.0			Tcb1-S§, tcb1
27	DULCILLO-DEL-NOROESTE	SIN-88	5.0		71.7		n.e.
28	DULCILLO-DEL-NOROESTE	SON-124	28.3		80.0	70.0	n.e.
29	DZIT-BACAL	QR00-20	100.0	0.0			tcb1
30	ELOTERO-DE-SIN/ELOTES-OCC.	M08036-(COL-8)	90.9		10.0		n.e.
31	ELOTERO-DE-SIN/REVENTADOR	M08045-(COL-17)	100.0	0.0			tcb1
32	ELOTERO-DE-SINALOA	M08029-(COL-1)	100.0		0.0		tcb1
33	ELOTERO-DE-SINALOA	SIN-17	31.5	0.0		5.0	tcb1
34	ELOTES	JSG-RMM-LCL-569	13.4		52.0		n.e.
35	ELOTES-CÓNICOS	PUE-510	93.8	0.0	50.0	20.0	tcb1
36	ELOTES-CÓNICOS	Sergio-Rojo	62.5		5.0		tcb1
37	ELOTES-OCCIDENTALES	FZ-084	0.0	20.0		70.0	tcb1
38	ELOTES-OCCIDENTALES	FZ-089	0.0			100.0	n.e.
39	ELOTES-OCCIDENTALES	FZ-109	7.8		100.0	60.0	n.e.
40	ELOTES-OCCIDENTALES	JAL-633	0.0	100.0	100.0	100.0	Tcb1-S

No.	Raza	Accesión ⁷	Promedios probador macho recesivo‡	Promeo	Promedios probador hembra dominante; (Tcb1-S/-)			
			(gal/gal tcbl/tcbl)	Lug03xTIC1.18	CIMMyTxTIC1.19	CIMMyTxTIC1.5 ¹⁰	·	
41	ELOTES-OCCIDENTALES	JRP-05089	0.0		100.0	100.0	n.e.	
42	ELOTES-OCCIDENTALES	JSG-LCL-JGRF-588	2.1	20.0	50.0		tcb1	
43	ELOTES-OCCIDENTALES	JSG-LCL-JGRF-589	0.7	40.0	100.0	100.0	Tcb1-S§, tcb1	
44	ELOTES-OCCIDENTALES	M-06129	6.6	60.0	65.0		Tcb1-S§, tcb1	
45	ELOTES-OCCIDENTALES	M-06187	0.8	10.0	100.0		Tcb1-S	
46	ELOTES-OCCIDENTALES	M-0619	0.5	8.0			tcb1	
47	ELOTES-OCCIDENTALES	M-0625	10.4	17.5	100.0		tcb1	
48	ELOTES-OCCIDENTALES	M-0633	0.7	21.7	100.0	100.0	tcb1	
49	ELOTES-OCCIDENTALES	M-0635	0.0	31.3		100.0	tcb1	
50	ELOTES-OCCIDENTALES	M-0642	0.7	30.0	100.0		tcb1	
51	ELOTES-OCCIDENTALES	M-0645	0.0	5.7	100.0		tcb1	
52	ELOTES-OCCIDENTALES	M-0651	4.8	16.7	100.0		tcb1	
53	ELOTES-OCCIDENTALES	M-0654	0.0	46.1		100.0	Tcb1-S§, tcb1	
54	ELOTES-OCCIDENTALES	M-0663	0.8		70.0		n.e.	
55	ELOTES-OCCIDENTALES	M-0674	1.4		48.3		n.e.	
56	ELOTES-OCCIDENTALES	M-0691	13.1		100.0	100.0	n.e.	
57	ELOTES-OCCIDENTALES	MO8022-(JAL-23)	0.0		76.7	100.0	n.e.	
58	ELOTES-OCCIDENTALES	TC-100	0.0		100.0		n.e.	
59	ELOTES-OCCIDENTALES	TC-160	7.6	6.0	100.0	100.0	tcb1	
60	ELOTES-OCCIDENTALES	TC-164	0.8		100.0	100.0	n.e.	
61	ELOTES-OCCIDENTALES	TC-244	4.5		100.0	66.7	n.e.	
62	ELOTES-OCCIDENTALES	TC-245	37.3		100.0	100.0	n.e.	
63	GORDO	CHIH-160	100.0		0.0	4.0	tcb1	

No.	Raza	Accesión ⁷	Promedios probador macho recesivo‡	Promeo	dios probador hembra (Tcb1-S/-)	a dominante‡	Alelos detectados†
			(ga1/ga1 tcb1/tcb1)	Lug03xTIC1.18	CIMMyTxTIC1.19	CIMMyTxTIC1.5 ¹⁰	·
64	HARINOSO-DE-OCHO	NAY-24	83.5		0.0	·	tcb1
65	JALA	NAY-54	96.0	0.0			tcb1
66	JALA	NAY-6	93.8	0.0			tcb1
67	MAIZ-BLANDO-DE-SONORA	SIN-7		0.0	0.0		tcb1
68	MAÍZ-DULCE	GTO-100	1.0	100.0			Tcb1-S
69	MAÍZ-DULCE	GTO-141	2.2	100.0		100.0	Tcb1- S
70	MAÍZ-DULCE	GTO-181	1.2	85.4			Tcb1- S
71	MAÍZ-DULCE	JAL-204	0.0		100.0	100.0	n.e.
72	MAÍZ-DULCE	JAL-300	0.0		92.5		n.e.
73	MAÍZ-DULCE	JAL-304	0.8	100.0	100.0	100.0	Tcb1-S
74	MAÍZ-DULCE	JAL-322	0.0		100.0	100.0	n.e.
75	MAÍZ-DULCE	M-06108	4.6		72.0		n.e.
76	MAÍZ-DULCE	M-06109	2.7		61.4		n.e.
77	MAÍZ-DULCE	M-06124	0.0		100.0		n.e.
78	MAÍZ-DULCE	M-06126	0.4		91.7		n.e.
79	MAÍZ-DULCE	M-06127	1.8		85.0		n.e.
80	MAÍZ-DULCE	M-06173	0.0	100.0	100.0		Tcb1-S
81	MAÍZ-DULCE	M-06193	0.0	100.0	100.0		Tcb1- S
82	MAÍZ-DULCE	M-0630	0.0		85.0		n.e.
83	MAÍZ-DULCE	TC-168	16.7		100.0		n.e.
84	MAÍZ-DULCE	TC-169	11.0		82.0		n.e.
85	MAÍZ-DULCE	TC-415	10.0	100.0	85.0		Tcb1-S
86	MAÍZ-DULCE	TC-417	2.5	100.0			Tcb1-S

No.	Raza	Accesión ⁷	Promedios probador macho recesivo‡	Promeo	a dominante‡	Alelos detectados†	
			(gal/gal tcbl/tcbl)	Lug03xTIC1.18	CIMMyTxTIC1.19	CIMMyTxTIC1.5 ¹⁰	
87	MAÍZ-DULCE	TC-420	0.7		88.0		n.e.
88	MAÍZ-DULCE	ZAC-182	0.0		100.0		n.e.
89	MOTOZINTECO	CHIS-650	96.8		50.0		n.e.
90	MOUNTAIN-YELLOW	JAL-127	94.4		8.0	0.0	n.e.
91	MUSHITO(MICHOACAN)	MICH-328	100.0		17.5		n.e.
92	NAL-TEL	YUC-148	95.3	0.0	0.0		tcb1
93	NAL-TEL-DE-ALTURA	OAX-301	100.0		0.0		tcb1
94	NEGRITO	OAX-117	43.4	42.0	80.0		Tcb1-S§, tcb1
95	NEGRITO	OAX-26	82.4	100.0			Tcb1-S
96	NEGRO-DE-CHIMALTENANGO	CHIS-230	100.0	0.0			tcb1
97	OLOTILLO	CHIS-81	78.2	0.0			tcb1
98	OLOTÓN	CHIS-684	100.0	0.0	50.0		tcb1
99	ONAVEÑO	SON-155	100.0		2.5	0.0	n.e.
100	PALOMERO-DE-CHIHUAHUA	CHIH-135	3.7	0.0	78.6	23.3	tcb1
101	PALOMERO-TOLUQUEÑO	MEX-210	96.7	0.0		100.0	tcb1
102	PALOMERO-TOLUQUEÑO	MEX-5	100.0		0.0	17.1	tcb1
103	PEPITILLA	GRO-335	96.9	0.0	0.0		tcb1
104	RATÓN	TAMS-66	100.0	0.0	0.0		tcb1
105	REVENTADOR	DGO-126	4.5	100.0	90.0		Tcb1- S
106	REVENTADOR	M08032-(COL-4)	55.0	2.5			tcb1
107	REVENTADOR	NAY-39	0.0	0.0		100.0	tcb1
108	REVENTADOR	SON-87	80.8		10.0		n.e.
109	TABLILLA-DE-OCHO	JAL-306	87.4	0.0	10.0	6.0	tcb1

No. Raza	Accesión ⁷	Promedios probador macho recesivo‡	Promee	a dominante‡	Alelos detectados†	
		(ga1/ga1 tcb1/tcb1)	Lug03xTIC1.18	CIMMyTxTIC1.19	CIMMyTxTIC1.5 ¹⁰	
110 TABLONCILLO	JAL-263	95.0	0.0	0.0	0.0	tcb1
111 TABLONCILLO	JAL-43	100.0		0.0	0.0	tcb1
112 TABLONCILLO-PERLA	NAY-12	95.0		0.0	0.0	tcb1
113 TEPECINTLE	CHIS-26	89.4		0.0		tcb1
114 TUXPEÑO	POP-21	100.0		0.0		tcb1
115 TUXPEÑO	POP-502	86.0		10.0		n.e.
116 TUXPEÑO	VER-39	94.1	0.0			tcb1
117 TUXPEÑO-NORTEÑO	CHIH-13	89.5	0.0		0.0	tcb1
118 VANDEÑO	CHIS-25	100.0		2.5		n.e.
119 ZAMORANO-AMARILLO	MICH-5	94.7	0.0			tcb1
120 ZAPALOTE-CHICO	CHIS-662	90.5	0.0	26.0	0.0	tcb1
121 ZAPALOTE-CHICO	OAX-48	90.6		0.0	3.3	tcb1
122 ZAPALOTE-GRANDE	CHIS-224	100.0	0.0	6.7		tcb1

⁷ ID de colecta de maíz; [‡] = Promedios de porcentajes; § = alelo de incompatibilidad en bajas frecuencias; † *n.e.*= no evaluado; ⁸ LUG03xW22-TIC-1.1 ⁹ (M-ILL-G9BxP87C5)xW22-TIC-1.1; ¹⁰ (M-ILL-G9BxP87C5)xW22-TIC-1.5

Nota: los probadores de las cruzas simples del CIMMyT fueron utilizados como referencia al comportamiento de LUG03xW22-TIC-1.1, pero se descubrió durante el desarrollo del estudio que no tienen estabilidad, debido probablemente a la ausencia de modificadores o presencia de inhibidores de la acción del alelo Tcb1-S.

En estudios anteriores Kermicle y Allen (1990), Kermicle (1997, 2001 y 2006), Evans y Kermicle (2001) y Kermicle y Evans (2005) han reportado factores genéticos que limitan el cruzamiento del maíz con el teocintle conocido como complejo de incompatibilidad del teocintle (TIC). La detección de los alelos del complejo de incompatibilidad del teocintle (TIC/-) para las razas Mexicanas de maíz se basó en el probador dominante hembra LUG03xW22-TIC-1.1 (Cuadro 37), ya que existieron diferencias con el llenado de grano en mazorca con los probadores hembra procedentes del CIMMyT (M-ILL-G9BxP87C5)xW22-TIC-1.1 y (M-ILL-G9BxP87C5)xW22-TIC-1.5.

El complejo de incompatibilidad del teocintle (TIC/-), responsable de la incompatibilidad se encontró en frecuencias variables mayores al 10% en las razas de maíz DULCILLO-DEL-NOROESTE, ELOTES-OCCIDENTALES, MAÍZ-DULCE, NEGRITO y REVENTADOR, el resto de las razas presenta frecuencias menores la 3% del llenado de grano en mazorca, y la presencia de alelos propuesta tcb1/tcb1, sin factor de incompatibilidad, que no los aísla reproductivamente del resto de polen circundante en su área de siembra.

4.4. Razas Sudamericanas

La detección de alelos de incompatibilidad en las colecciones representativas de grupos raciales de maíz de Sudamérica de los sistemas de incompatibilidad ga1 y tcb1, resultan de gran importancia las barreras de incompatibilidad en el género Zea. Las accesiones fueron proporcionadas por el CIMMyT de un estrato de maíz de usos especiales: dulces y palomeros. Nelson (1953) señaló que los maíces reventadores o popcorns de las razas Sudamericanas cuando son utilizados como progenitor hembra y recibieron polen de maíz dentado, no produjeron semillas, más sin embargo la cruza recíproca forma llenados completos de grano en la mazorca, por lo que éste efecto es conocido como cruzamiento no-recíproco para los sistemas de incompatibilidad ga1 y tcb1.

Se realizaron las pruebas de normalidad de los datos de campo resultando que cuando se usaron los probadores recesivos presentaron normalidad. Los datos con el probador hembra *Ga1-S/Ga1-S* no presentaron normalidad, aún con transformaciones (Cuadro 38), en cambio los datos con el probador *Tcb1-S/-* presentaron normalidad aceptable con la transformación del recíproco más uno, y con estos nuevos valores se realizó el análisis de varianza con la "nueva" variable *Tcb1-S*-^{INV+1}, para distinguirlo de la variable con los datos originales.

Cuadro 38. Pruebas de normalidad de los datos de campo y transformaciones de las razas Sudamericanas de los sistemas de incompatibilidad *ga1* y *tcb1*.

Probador	N	Datos sin transformar	valor de p	Y =√(Y + 1)	valor de p	Y'=1/ (Y+1)	valor de p
ga1	238	1.913	0.0557 ns	-0.013	0.9900 ns	4.056	0.0000 **
Ga1-S	159	-3.674	0.0002 **	-4.285	0.0000 **	5.083	0.0000 **
Tcb1-S	112	4.963	0.0000 **	3.129	0.0018 **	1.176	0.2394 ns

N= número de muestras

4.4.1. Locus *ga1*

Para la caracterización de las razas respecto al sistema de incompatibilidad *ga1* se evaluaron 124 accesiones de 31 razas Sudamericanas (predominantemente palomeros y dulces) durante el período 2007 al 2009. El análisis de varianza presentó diferencias altamente significativas para la variación tanto entre como dentro de razas, con una R² de 88.6 y un coeficiente de variación del 49.09 y de 34.61% para los probadores homocigotos *ga1* y *Ga1-S*, respectivamente (Cuadro 39).

Cuadro 39. Análisis de varianza del promedio del llenado de grano en mazorca en razas Sudamericanas con los probadores homocigotes recesivos y *Ga1-S/Ga1-S*, durante los años 2007 a 2009, en los campos experimentales del CUCBA.

	Proba	Probador macho recesivo (ga1/ga1)			Probador hembra dominante (Ga1-S/Ga1-S)			
FV	GL	CM	Pr > F	GL	CM	Pr > F		
Raza	31	6188.72	<.0001 **	30	5151.3704	<.0001 **		
Accesiones(Raza)	98	1574.08	<.0001 **	93	1042.7263	0.0162 **		
Error	108	421.96		35	545.2381			
Total	237			158				
CV		49.09			34.61			
R^2		0.886			0.935			

Donde: FV= Fuente de variación; GL= grados de libertad; CM= Cuadrado medio; ns= no significativo; **= altamente significativo al 0.01 de probabilidad; CV=coeficiente de variación; R²= coeficiente de determinación.

Con el probador recesivo sólo la raza SOCORRO presentó 5% del llenado de grano en mazorca y con la prueba de Dunnett al 0.05 de probabilidad resultó no significativo (Cuadro 40). No fue evaluada ésta raza con el probador dominante (*Ga1-S/Ga1-S*), por lo que se desconoce si contiene alelos de incompatibilidad de este locus.

Cuadro 40. Promedios de la prueba de Dunnett para la variable llenado de grano en mazorca de las razas Sudamericanas con probador macho recesivo y probadores hembras (*Ga1-S/Ga1-S* y *Tcb1-S/-*) en los campos experimentales del CUCBA.

		Probador macho recesivo (ga1/ga1, tcb1/tcb1)			Probador hembra dominante (Ga1-S/Ga1-S)		Probador hembra dominante (Tcb1-S/-)	
	(100% grano)		(0% grano)		(0% grano)	(0% grano)		_
Comparación Razas ¹¹	Dif. entre Medias	p	Dif. entre Medias	p	Dif. entre Medias	p	Dif. entre Medias	p
ARAGUITO	-19.2	ns	75.8	*	60.0	*	-0.2848	ns
AVATI-PICHINGA	-70.945	*	24.055	ns	71.111	*	-0.1389	ns
AVATI-PICHINGA-IHU	-86.275	*	8.725	ns	95.833	*	0.0	ns
BRACHYTIC-POPCORN	-63.829	*	31.171	ns	67.778	*	0.0	ns
CHIRIMITO	-15.868	ns	79.133	*	100.0	*	-0.5885	ns
CHOCOCEÑO	-57.02	*	37.98	ns	76.0	*	-0.4934	ns
CHUSPILLU (100% ga1)	<u>100.0</u>	-	95.0	*	0.0	ns	-	-
CLAVILLO	-34.165	ns	60.835	*	100.0	*	-	-
CURAGUA	-53.371	*	41.629	ns	71.25	*	-0.5522	ns
DULCE	-31.444	ns	63.556	*	0.0	ns	-0.463	ns
DULCE-COMERCIAL	-22.22	ns	72.78	*	0.0	ns	0.0	ns
ENANO	-4.455	ns	90.545	*	6.25	ns	-	-
IMBRICADO	-59.5	ns	35.5	ns	100.0	*	-	-
KARAPAMPA	0.0	ns	95.0	*	0.0	ns	-	-
LADY-FINGER	-54.5	ns	40.5	ns	100.0	*	-	-
MAÍZ-DULCE	-16.665	ns	78.335	*	76.667	*	-0.4536	ns
PERLA	-34.75	ns	60.25	*	75.0	*	-	-
PERLITA (0% Tcb1-S)	-75.243	*	19.757	ns	100.0	*	<u>0.0</u>	-
PEROLA (0% Ga1-S)	-5.867	ns	89.133	*	0.0	-	-	-
PIPOCA	-48.353	*	46.647	*	46.75	*	-0.4146	ns
PIRA	-37.039	ns	57.961	*	71.667	*	-0.3333	ns
PIRA-NARANJA	-15.833	ns	79.168	*	0.0	ns	-	-
	ARAGUITO AVATI-PICHINGA AVATI-PICHINGA-IHU BRACHYTIC-POPCORN CHIRIMITO CHOCOCEÑO CHUSPILLU (100% ga1) CLAVILLO CURAGUA DULCE DULCE-COMERCIAL ENANO IMBRICADO KARAPAMPA LADY-FINGER MAÍZ-DULCE PERLA PERLITA (0% Tcb1-S) PIPOCA PIRA	Comparación Razas¹¹ Dif. entre Medias ARAGUITO -19.2 AVATI-PICHINGA -70.945 AVATI-PICHINGA-IHU -86.275 BRACHYTIC-POPCORN -63.829 CHIRIMITO -15.868 CHOCOCEÑO -57.02 CHUSPILLU (100% gal) 100.0 CLAVILLO -34.165 CURAGUA -53.371 DULCE -31.444 DULCE-COMERCIAL -22.22 ENANO -4.455 IMBRICADO -59.5 KARAPAMPA 0.0 LADY-FINGER -54.5 MAÍZ-DULCE -16.665 PERLA -34.75 PERLITA (0% Tcb1-S) -75.243 PEROLA (0% Ga1-S) -5.867 PIPOCA -48.353 PIRA -37.039	Comparación Razas¹¹ Dif. entre Medias p ARAGUITO -19.2 ns AVATI-PICHINGA -70.945 * AVATI-PICHINGA-IHU -86.275 * BRACHYTIC-POPCORN -63.829 * CHIRIMITO -15.868 ns CHOCOCEÑO -57.02 * CHUSPILLU (100% gal) 100.0 - CLAVILLO -34.165 ns CURAGUA -53.371 * DULCE -31.444 ns DULCE -31.444 ns DULCE-COMERCIAL -22.22 ns IMBRICADO -59.5 ns KARAPAMPA 0.0 ns LADY-FINGER -54.5 ns MAÍZ-DULCE -16.665 ns PERLA -34.75 ns PERLITA (0% Tcb1-S) -75.243 * PEROLA (0% Ga1-S) -5.867 ns PIPOCA -48.353 * PIRA -37.039 ns	Comparación Razas¹¹ (100% grano) (0% grano) ARAGUITO -19.2 ns 75.8 AVATI-PICHINGA -70.945 * 24.055 AVATI-PICHINGA-IHU -86.275 * 8.725 BRACHYTIC-POPCORN -63.829 * 31.171 CHIRIMITO -15.868 ns 79.133 CHOCOCEÑO -57.02 * 37.98 CHUSPILLU (100% ga1) 100.0 - 95.0 CLAVILLO -34.165 ns 60.835 CURAGUA -53.371 * 41.629 DULCE -31.444 ns 63.556 DULCE -31.444 ns 63.556 DULCE-COMERCIAL -22.22 ns 72.78 ENANO -4.455 ns 90.545 IMBRICADO -59.5 ns 35.5 KARAPAMPA 0.0 ns 95.0 LADY-FINGER -54.5 ns 40.5 MAÍZ-DULCE -16.665 ns 78.33	Comparación Razas¹¹ (100% grano) (0% grano) romanos ARAGUITO -19.2 ns 75.8 * AVATI-PICHINGA -70.945 * 24.055 ns AVATI-PICHINGA-IHU -86.275 * 8.725 ns BRACHYTIC-POPCORN -63.829 * 31.171 ns CHOCOCEÑO -57.02 * 37.98 ns CHUSPILLU (100% ga1) 100.0 - 95.0 * CURAGUA -53.371 * 41.629 ns DULCE -31.444 ns 63.556 * DULCE-COMERCIAL -22.22 ns 72.78 * ENANO -4.455 ns 90.545 * IMBRICADO -59.5 ns 35.5 ns KARAPAMPA 0.0 ns 95.0 * LADY-FINGER -54.5 ns 40.5 ns MAÍZ-DULCE -16.665 ns 78.335 * PERL	Comparación Razas Comp	Probability Probability	Problem Pro

 $^{^{11}}$ * = comparaciones significativas al nivel 0.05

			Probador macho recesivo (ga1/ga1, tcb1/tcb1)			Probador hembra dominante (Ga1-S/Ga1-S)		Probador hembra dominante (Tcb1-S/-)	
		(100% grano)		(0% grano)		(0% grano)		(0% grano)	_
No.	Comparación Razas ¹¹	Dif. entre Medias	p	Dif. entre Medias	p	Dif. entre Medias	p	Dif. entre Medias	p
23	PISANKALLA	-83.438	*	11.562	ns	92.364	*	-0.7223	ns
24	PISINCHO	-87.5	*	7.5	ns	100.0	*	-0.9524	ns
25	PISINGALLO	-89.302	*	5.698	ns	95.238	*	-0.7494	ns
26	POLLO	-12.625	ns	82.375	*	30.0	ns	-0.9582	ns
27	POP-CORN	-87.5	*	7.5	ns	100.0	*	-0.9524	ns
28	PORORO	-74.5	*	20.5	ns	100.0	*	0.0	ns
29	PURITO	-23.75	ns	71.25	*	100.0	*	-	-
30	RGDENT	-10.0	ns	85.0	*	100.0	*	-	-
31	SOCORRO (0% ga1)	-95.0	*	<u>5.0</u>	-	-	-	-0.6467	ns
32	STRAWBERRY-POP	-20.235	ns	74.765	*	100.0	*	-0.603	ns
11 * =	comparaciones significativas al nivel 0.05								
	GL error	108		108		35		41	
	CM error	421.960		421.960		545.238		0.236	
	Valor Critico de Dunnett	2.936		2.936		3.325		3.039	

Con base en los resultados del probador hembra dominante (*Ga1-S/Ga1-S*) existe evidencia de mayor presencia de los alelos *Ga1-S* y *Ga1-m*, siendo con menor presencia el alelo *ga1* en sólo 6 razas, con un porcentaje de 19.3% sobre la base de 31 razas evaluadas (la raza SOCORO no fue evaluada con éste probador) y son: CHUSPILLU, DULCE, DULCE-COMERCIAL, KARAPAMPA, PEROLA Y PIRA-NARANJA (Cuadro 40).

Con base en los resultados de los probadores recesivos y dominantes para el locus *ga1*, además de los criterios genéticos, se determinó la presencia de los diferentes alelos conocidos (Cuadro 41). De las 124 accesiones evaluadas, en 24 accesiones de 12 razas se encontró el alelo recesivo (*ga1*) en estado homocigoto y fueron: ARAGUITO (VENE-628), AVATI-PICHINGA (BRAZ-2790 y BRAZ-2810), CHUSPILLU (BOLI-468), DULCE (ARZM-01113, ARZM-01116, ARZM-01117, ARZM-07137 y ARZM-21005), DULCE-COMERCIAL (CHZM-06009), ENANO (M.DIOS2-(PERU-1124)) y (M.DIOS3-(PERU-1111)), KARAPAMPA (BOLI-323), PERLA (ARZM-04061), PEROLA (BOLI-437, BOLI-543, BOLI-711, BOLI-804 y BOLI-929), PIPOCA (BRAZ-I-74-1 y BRAZ-MG054), PIRA-NARANJA (COMPUESTO), POLLO (COMPUESTO y CUN-465); en 46 accesiones de trece razas se presentó el alelo homocigoto dominante (*Ga1-S*) con el 37.1%; y en 16 accesiones de 16 razas se presentó el alelo neutro (*Ga1-m*) con el 12.9%. El resto de las accesiones presentaron diferentes combinaciones de los alelos detectados con el 30.6% (Cuadro 41 y 42).

Cuadro 41. Propuesta de la estructura alélica del sistema de incompatibilidad *ga1*, para razas Sudamericanas durante los años 2007 a 2009 en los campos experimentales del CUCBA.

No.	Raza	Accesión ¹²	Promedios probador macho recesivo‡ (ga1/ga1 tcb1/tcb1)	Promedios probador hembra dominante;;	Alelos detectados	
1	ARAGUITO	VENE-568	70.0	80.0	Ga1-m	
2	ARAGUITO	VENE-628	100.0	0.0	ga1	
3	ARAGUITO	VENE-760	64.0	100.0	Ga1-m	
4	AVATI-PICHINGA	BRAZ-2760	0.7	100.0	Ga1-S	
5	AVATI-PICHINGA	BRAZ2774	0.0	100.0	Ga1-S	
6	AVATI-PICHINGA	BRAZ—2776	0.0	100.0	Ga1-S	
7	AVATI-PICHINGA	BRAZ-2785	5.0	100.0	Ga1-S	
8	AVATI-PICHINGA	BRAZ-2790	87.5	0.0	ga1	
9	AVATI-PICHINGA	BRAZ-2799	92.5	40.0	Ga1-m, ga1	
10	AVATI-PICHINGA	BRAZ-2810	77.5	0.0	ga1	
11	AVATI-PICHINGA	BRAZ-2812	0.0	100.0	Ga1-S	
12	AVATI-PICHINGA	BRAZ-2823	1.0	100.0	Ga1-S	
13	AVATI-PICHINGA-IHU	BRAZ-2827	0.0	100.0	Ga1-S	
14	AVATI-PICHINGA-IHU	BRAZ-2829	11.6	75.0	Ga1-S, ga1	
15	AVATI-PICHINGA-IHU	BRAZ-2830	12.6	100.0	Ga1-S	
16	AVATI-PICHINGA-IHU	PARA-169	3.4	100.0	Ga1-S	
17	AVATI-PICHINGA-IHU	PARA-172	14.8	100.0	Ga1-S, Ga1-m	
18	AVATI-PICHINGA-IHU	PARA-173	67.5	100.0	Ga1-m	
19	BRACHYTIC-POPCORN	BRAZ—2779	0.8	100.0	Ga1-S	

¹² ID de colecta de maíz; ‡ = Promedios de porcentajes; ‡ = Promedios de porcentajes de NC354xW22P4830 y/6 NC354xW22P5270;

No.	Raza	Accesión ¹²	Promedios probador macho recesivo‡	Promedios probador hembra dominante;;	Alelos detectados
			(ga1/ga1 tcb1/tcb1)	(Ga1-S/Ga1-S)	
20	BRACHYTIC-POPCORN	BRAZ-2788	34.2	100.0	Ga1-S, Ga1-m
21	BRACHYTIC-POPCORN	BRAZ-2817	90.9	28.6	Ga1-m, ga1
22	BRACHYTIC-POPCORN	PARA-170	39.1	75.0	Ga1-S, Ga1-m
23	BRACHYTIC-POPCORN	PARA-171	0.6	80.0	Ga1-S
24	CHIRIMITO	VENE-529	79.4	100.0	Ga1-m, Ga1-S
25	CHIRIMITO	VENE-703	88.9	100.0	Ga1-m
26	CHOCOCEÑO	CHO-348	33.3	0.0	Ga1-S, ga1
27	CHOCOCEÑO	CHO-415	88.1	80.0	Ga1-m
28	CHOCOCEÑO	CRIC-216	4.0	100.0	Ga1-S
29	CHOCOCEÑO	CRIC-355	22.9	100.0	Ga1-S, Ga1-m
30	CHUSPILLU	BOLI-468	100.0	0.0	ga1
31	CLAVILLO	PANA-55	65.8	100.0	Ga1-m
32	CURAGUA	CHIL-301	0.0	100.0	Ga1-S
33	CURAGUA	CHIL-314P	91.4	60.0	Ga1-m, ga1
34	CURAGUA	CHZM-07004	0.1	100.0	Ga1-S
35	CURAGUA	CHZM-13134	95.0	25.0	ga1, Ga1-m
36	DULCE	ARZM-01113	56.0	0.0	ga1
37	DULCE	ARZM-01116	68.3	0.0	ga1
38	DULCE	ARZM-01117	72.5	0.0	ga1
39	DULCE	ARZM-07137	86.7	0.0	ga1
40	DULCE	ARZM-21005	50.0	0.0	gal
41	DULCE-COMERCIAL	CHZM-06009	77.8	0.0	gal
42	ENANO	M.DIOS2-(PERU-1124)	91.1	0.0	ga1

No.	Raza	Accesión ¹²	Promedios probador macho recesivo‡ (ga1/ga1 tcb1/tcb1)	Promedios probador hembra dominante;; (Ga1-S/Ga1-S)	Alelos detectados
43	ENANO	M.DIOS3-(PERU-1111)	100.0	25.0	gal
44	IMBRICADO	COMPUESTO	40.5	100.0	Ga1-m
45	KARAPAMPA	BOLI-323	100.0	0.0	ga1
46	LADY-FINGER	SINA-101	45.5	100.0	Ga1-S, Ga1-m
47	MAIZ-DULCE	COMPUESTO	83.3	67.5	Ga1-m
48	PERLA	ARZM-04061	90.0	0.0	ga1
49	PERLA	ARZM-07051	40.5	100.0	Ga1-m, Ga1-S
50	PERLITA	ARZM-03042	0.0	100.0	Ga1-S
51	PERLITA	ARZM-04055	0.0	100.0	Ga1-S
52	PERLITA	ARZM-05049	83.3	100.0	Ga1-m
53	PERLITA	ARZM-07041	25.3	100.0	Ga1-S
54	PERLITA	ARZM-07049	57.5	100.0	Ga1-m
55	PERLITA	ARZM-07057	7.1	100.0	Ga1-S
56	PERLITA	ARZM-07100	0.0	100.0	Ga1-S
57	PEROLA	BOLI-437	100.0	0.0	ga1
58	PEROLA	BOLI-543	87.5	0.0	ga1
59	PEROLA	BOLI-711	96.2	0.0	ga1
60	PEROLA	BOLI-804	94.3	0.0	ga1
61	PEROLA	BOLI-929	92.7	0.0	ga1
62	PIPOCA	BRAZ-BA007	61.0	100.0	Ga1-m, Ga1-S
63	PIPOCA	BRAZ-BA025	90.0	40.0	Ga1-m, ga1
64	PIPOCA	BRAZ-BA039	94.4	25.0	gal, Gal-m
65	PIPOCA	BRAZ-I-74-1	91.1	0.0	ga1

No.	Raza	Accesión ¹²	Promedios probador macho recesivo‡	Promedios probador hembra dominante;;	Alelos detectados
			(ga1/ga1 tcb1/tcb1)	(Ga1-S/Ga1-S)	
66	PIPOCA	BRAZ-MG054	73.2	0.0	ga1
67	PIPOCA	BRAZ-PR027	30.4	100.0	Ga1-S, Ga1-m
68	PIPOCA	BRAZ-PR046	0.3	55.0	Ga1-S
69	PIPOCA	BRAZ-SE004	13.1	100.0	Ga1-S
70	PIPOCA	BRAZ-SE013	50.0	25.0	Ga1-m
71	PIPOCA	BRAZ-SE015	23.6	100.0	Ga1-m, Ga1-S
72	PIPOCA	BRAZ-SE031	100.0	14.3	Ga1-m, ga1
73	PIPOCA	CMS-42-PONTUD-(gde-redondo)	48.3	100.0	Ga1-S, Ga1-m
74	PIPOCA	CMS-42-REDOND-(pequeño)	36.7	60.0	Ga1-S, Ga1-m
75	PIRA	BOYA-462	92.9	100.0	Ga1-m
76	PIRA	COMPUESTO	54.3	100.0	Ga1-S, Ga1-m
77	PIRA	CUN-327	0.4	100.0	Ga1-S
78	PIRA	TOL-390	100.0	35.7	Ga1-m
79	PIRA-NARANJA	COMPUESTO	70.0	0.0	ga1
80	PISANKALLA	BOZM-59	8.3	100.0	Ga1-S
81	PISANKALLA	CHZM-13104	50.0	88.0	Ga1-m, Ga1-S
82	PISANKALLA	URUG-1111	0.1	100.0	Ga1-S
83	PISANKALLA	URUG-159	10.0	100.0	Ga1-S, Ga1-m
84	PISANKALLA	URUG-192	10.0	100.0	Ga1-S, Ga1-m
85	PISANKALLA	URUG-197	0.0	100.0	Ga1-S
86	PISANKALLA	URUG-298	100.0	40.0	Ga1-m, ga1
87	PISANKALLA	URUG-301	0.0	100.0	Ga1-S
88	PISANKALLA	URUG-315	0.0	100.0	Ga1-S

No.	Raza	Accesión ¹²	Promedios probador macho recesivo‡ (ga1/ga1 tcb1/tcb1)	Promedios probador hembra dominante;;	Alelos detectados
89	PISANKALLA	URUG-351	0.0	100.0	Ga1-S
90	PISANKALLA	URUG-552	20.5	88.0	Ga1-S, Ga1-m
91	PISINCHO	ARG-481	0.0	100.0	Ga1-S
92	PISINCHO	ARG-482	25.0	100.0	Ga1-S, Ga1-m
93	PISINGALLO	ARZM-01112	0.0	100.0	Ga1-S
94	PISINGALLO	ARZM-06063	0.0	40.0	Ga1-S, ga1
95	PISINGALLO	ARZM-06073	2.0	100.0	Ga1-S
96	PISINGALLO	ARZM-12036	13.1	100.0	Ga1-S
97	PISINGALLO	ARZM-13016	7.0	100.0	Ga1-S, Ga1-m
98	PISINGALLO	ARZM-13022	1.3	80.0	Ga1-S, ga1
99	PISINGALLO	ARZM-13062	33.8	100.0	Ga1-m, Ga1-S
100	PISINGALLO	ARZM-13094	45.3	100.0	Ga1-S, Ga1-m
101	PISINGALLO	ARZM-13095	11.4	100.0	Ga1-S
102	PISINGALLO	ARZM-13142	0.0	100.0	Ga1-S
103	PISINGALLO	ARZM-14009	71.4	100.0	Ga1-m, Ga1-S
104	PISINGALLO	ARZM-14012	24.4	100.0	Ga1-S, Ga1-m
105	PISINGALLO	ARZM-14025	0.0	100.0	Ga1-S
106	PISINGALLO	ARZM-14070	0.0	100.0	Ga1-S
107	PISINGALLO	ARZM-16033	0.0	100.0	Ga1-S
108	PISINGALLO	ARZM-17015	0.0	100.0	Ga1-S
109	PISINGALLO	ARZM-17021	5.0	80.0	Ga1-S
110	PISINGALLO	ARZM-17027	0.0	100.0	Ga1-S
111	PISINGALLO	ARZM-17043	0.0	100.0	Ga1-S

No.	Raza	Accesión ¹²	Promedios probador macho recesivo‡	Promedios probador hembra dominante‡‡	Alelos detectados
			(ga1/ga1 tcb1/tcb1)	(Ga1-S/Ga1-S)	
112	PISINGALLO	URUG-107A	0.0	100.0	Ga1-S
113	PISINGALLO	URUG-1110A	10.0	100.0	Ga1-S
114	POLLO	COMPUESTO	85.7	0.0	ga1
115	POLLO	CRIC-238	86.8	100.0	Ga1-m
116	POLLO	CUN-465	100.0	0.0	ga1
117	POLLO	CUND-366	77.0	20.0	gal, Gal-m
118	POP-CORN	BRAZ-1239	0.0	100.0	Ga1-S
119	POP-CORN	BRAZ-2828	18.8	100.0	Ga1-S
120	PORORO	BOLI-587	50.0	100.0	Ga1-m, Ga1-S
121	PORORO	BOLI-806	1.0	100.0	Ga1-S
122	PURITO	BOZM-234	76.3	100.0	Ga1-m, Ga1-S
123	RGDENT	PARA-166	90.0	100.0	Ga1-m
124	STRAWBERRY-POP	STRAWBERRYPOP	79.8	100.0	Ga1-m

¹² ID de colecta de maíz; [†] = Promedios de porcentajes; [†] = Promedios de porcentajes; ^{‡‡} = Promedios de porcentajes de NC354xW22P4830 y/ó NC354xW22P5270;

Cabe resaltar la alta presencia alélica de *Ga1-S* con el 60.48%, debido a que se evaluaron colecciones tipo palomeros o popcorn. Aún así, con sólo una parte evaluada de la diversidad de razas Sudamericanas, es importante resaltar que el 40.32% presentó el alelo neutro *Ga1-m* (Cuadro 42), como ya se ha descrito, su grano de polen es capaz de fertilizar óvulos con alelo *ga1* y *Ga1-S*, y a la vez, sus propios estigmas reciben granos de polen de los otros dos alelos mencionados, rompiendo la barrera de incompatibilidad del locus *ga1*.

Cuadro 42. Porcentaje de alelos detectados del locus *ga1* en las razas Sudamericanas evaluadas durante los años 2007-2009 en los campos experimentales del CUCBA.

Alelo(s)	Accesiones	% de accesiones	Suma de alelos detec	tados (%)
gal	24	19.35	29.84	gal
gal, Gal-m	9	7.26		
Ga1-m	16	12.9	40.32	Ga1-m
Ga1-m, Ga1-S	25	20.16		
Ga1-S, ga1	4	3.23		
Ga1-S	46	37.1	60.48	Ga1-S
Totales	124	100	130.65	

4.4.2. Locus *tch1*

Para el locus *tcb1* se evaluaron 71 accesiones de 21 razas representativas de grupos raciales Palomeros y Dulces de Sudamérica durante el año 2009. El análisis de varianza para el locus *tcb1* presentó diferencias altamente significativas para la fuente de variación Razas, no así para Accesiones dentro de Razas, con un coeficiente de variación del 104.67%, además de un valor de R² del 0.585 considerado moderado (Cuadro 43).

Cuadro 43. Análisis de varianza del locus de incompatibilidad *tcb1* en razas Sudamericanas de maíz durante el año 2009, en los campos experimentales del CUCBA.

		Probador hembra dominante							
		$Tcb1$ - S $^{ extsf{INV+1}}$							
FV	GL	CM	Pr > F						
Raza	20	0.4705	0.0307 **						
Accesiones (Raza)	50	0.0908	0.9993 ns						
Error	41	0.2362							
Total	111								
	CV	104.67							
	\mathbb{R}^2	0.585							

Donde: Tcb1- $S^{\text{INV+1}}$ = transformación del inverso más uno; FV= Fuente de variación; GL= grados de libertad; CM= Cuadrado medio; ns= no significativo; CV=coeficiente de variación; R^2 = coeficiente de determinación.

La prueba de Dunnett arroja datos interesantes. Por ser una prueba para detectar diferencias en los promedios del llenado de grano en mazorca la prueba para la detección de alelos de incompatibilidad se realizó con tres probadores, donde sólo uno de los probadores fue estable y consistente y fue el probador hembra LUG03xW22-TIC-1.1.

A continuación se presenta en el Cuadro 44 la propuesta de alelos detectados del complejo de incompatibilidad del teocintle (TIC/-) para las razas Sudamericanas de maíz del locus *tcb1*.

Cuadro 44. Propuesta de alelos detectados en el sistema de incompatibilidad tcb1, para razas Sudamericanas de maíz durante el año 2009 en los campos experimentales del CUCBA, con los probadores hembra LUG03xTIC1.1, CIMMyTxTIC1.1 y CIMMyTxTIC1.5.

No.	Raza	Accesión ¹³	Promedios probador macho recesivo [‡]	Promedio	dominante [‡]	Alelos detectados	
				LUG03xTic1.1 ¹⁴	CIMMyTxTic1.1 ¹⁵	CIMMyTxTic1.5 ¹⁶	
1	ARAGUITO	VENE-568	70.0	0.0	4.0	10.0	tcb1
2	ARAGUITO	VENE-628	100.0	0.0	0.0	0.0	tcb1
3	AVATI-PICHINGA	BRAZ2760	0.7	0.0			tcb1
4	AVATI-PICHINGA	BRAZ2774	0.0	5.0			tcb1
5	AVATI-PICHINGA	BRAZ2776	0.0	0.0			tcb1
6	AVATI-PICHINGA	BRAZ-2785	5.0	0.0			tcb1
7	AVATI-PICHINGA	BRAZ-2812	0.0	0.0			tcb1
8	AVATI-PICHINGA	BRAZ-2823	1.0	0.0			tcb1
9	AVATI-PICHINGA-IHU	BRAZ-2827	0.0	0.0			tcb1
10	AVATI-PICHINGA-IHU	BRAZ-2830	12.6	0.0			tcb1
11	AVATI-PICHINGA-IHU	PARA-169	3.4	0.0			tcb1
12	AVATI-PICHINGA-IHU	PARA-172	14.8	0.0			tcb1
13	BRACHYTIC-POPCORN	BRAZ2779	0.8	0.0			tcb1
14	BRACHYTIC-POPCORN	BRAZ-2788	34.2	0.0			tcb1
15	BRACHYTIC-POPCORN	PARA-171	0.6	0.0			tcb1
16	CHIRIMITO	VENE-529	79.4	1.4			tcb1
17	CHOCOCEÑO	CRIC-216	4.0	58.8			Tcb1-S§, tcb1

ID de colecta de maíz; \ddagger = Promedios de porcentajes; \S = alelo de incompatibilidad en bajas frecuencias; LUG03xW22-TIC-1.1;

⁽M-ILL-G9BxP87C5)xW22-TIC-1.1; (M-ILL-G9BxP87C5)xW22-TIC-1.5;

No.	Raza	Accesión ¹³		Promedio	dominante [‡]	Alelos detectados	
			(ga1/ga1 tcb1/tcb1)	LUG03xTic1.1 ¹⁴	CIMMyTxTic1.1 ¹⁵	CIMMyTxTic1.5 ¹⁶	
18	CURAGUA	CHIL-301	0.0	0.0	5.0	50.0	tcb1
19	CURAGUA	CHZM-07004	0.1	0.0		18.0	tcb1
20	DULCE	ARZM-01113	56.0	0.0	0.0	10.0	tcb1
21	DULCE	ARZM-01116	68.3	0.0		3.3	tcb1
22	DULCE	ARZM-01117	72.5	0.0	18.0	6.7	tcb1
23	DULCE	ARZM-07137	86.7	0.0		6.0	tcb1
24	DULCE	ARZM-21005	50.0		2.9		n.e.
25	DULCE-COMERCIAL	CHZM-06009	77.8	0.0	0.0		tcb1
26	MAIZ-DULCE	COMPUESTO	83.3	0.8			tcb1
27	PERLITA	ARZM-03042	0.0	0.0			tcb1
28	PERLITA	ARZM-07041	25.3	0.0			tcb1
29	PERLITA	ARZM-07100	0.0	0.0			tcb1
30	PIPOCA	BRAZ-BA007	61.0	7.5			tcb1
31	PIPOCA	BRAZ-PR027	30.4	0.0			tcb1
32	PIPOCA	BRAZ-PR046	0.3	0.0			tcb1
33	PIPOCA	BRAZ-SE004	13.1	1.7			tcb1
34	PIPOCA	BRAZ-SE015	23.6	0.0	40.0	5.0	tcb1
35	PIPOCA	CMS-42-REDOND-(pequeño)	36.7	0.0			tcb1
36	PIRA	CUN-327	0.4	2.0			tcb1
37	PIRA	TOL-390	100.0	0.0			tcb1
38	PISANKALLA	BOZM-59	8.3	0.0		35.0	tcb1
39	PISANKALLA	URUG-1111	0.1	21.8		66.3	Tcb1-S§, tcb1
40	PISANKALLA	URUG-159	10.0		0.0	35.0	tcb1

No.	Raza	Accesión ¹³	Promedios probador macho recesivo [‡]	Promedios probador hembra dominante ‡			Alelos detectados
			(ga1/ga1 tcb1/tcb1)	LUG03xTic1.1 ¹⁴	CIMMyTxTic1.1 ¹⁵	CIMMyTxTic1.5 ¹⁶	
41	PISANKALLA	URUG-192	10.0		0.0	50.0	tcb1
42	PISANKALLA	URUG-197	0.0		35.0		n.e.
43	PISANKALLA	URUG-301	0.0	100.0		82.0	Tcb1- S §
44	PISANKALLA	URUG-315	0.0		32.5	•	n.e.
45	PISANKALLA	URUG-351	0.0		85.0		n.e.
46	PISINCHO	ARG-481	0.0		38.3		n.e.
47	PISINCHO	ARG-482	25.0		13.3		n.e.
48	PISINGALLO	ARZM-01112	0.0		65.0	80.0	n.e.
49	PISINGALLO	ARZM-06063	0.0		44.2	40.0	n.e.
50	PISINGALLO	ARZM-06073	2.0			50.0	n.e.
51	PISINGALLO	ARZM-12036	13.1	23.0	68.0		Tcb1-S§, tcb1
52	PISINGALLO	ARZM-13022	1.3			20.0	n.e.
53	PISINGALLO	ARZM-13094	45.3			46.0	n.e.
54	PISINGALLO	ARZM-13095	11.4	0.0	100.0	42.0	tcb1
55	PISINGALLO	ARZM-13142	0.0	1.4			tcb1
56	PISINGALLO	ARZM-14012	24.4	0.0	82.0		tcb1
57	PISINGALLO	ARZM-14025	0.0	0.0	60.0	42.5	tcb1
58	PISINGALLO	ARZM-14070	0.0	1.3			tcb1
59	PISINGALLO	ARZM-16033	0.0	12.5	20.0		Tcb1-S§, tcb1
60	PISINGALLO	ARZM-17015	0.0	4.0	100.0		tcb1
61	PISINGALLO	ARZM-17021	5.0	0.0	40.0		tcb1
62	PISINGALLO	ARZM-17027	0.0	0.0	100.0		tcb1
63	PISINGALLO	ARZM-17043	0.0	0.0		100.0	tcb1

No.	Raza	Accesión ¹³	Promedios probador macho recesivo [‡]	Promedios probador hembra dominante ‡			Alelos detectados
			(ga1/ga1 tcb1/tcb1)	LUG03xTic1.1 ¹⁴	CIMMyTxTic1.1 ¹⁵	CIMMyTxTic1.5 ¹⁶	
64	PISINGALLO	URUG-107A	0.0	20.6			Tcb1-S§, tcb1
65	PISINGALLO	URUG-1110A	10.0	10.5	55.0		tcb1
66	POLLO	CRIC-238	86.8	32.5		•	Tcb1-S, tcb1
67	POP-CORN	BRAZ-2828	18.8	20.0			Tcb1-S§, tcb1
68	PORORO	BOLI-587	50.0	0.0			tcb1
69	PORORO	BOLI-806	1.0	0.0			tcb1
70	SOCORRO	ARZM-12079	5.0	0.0	55.0	22.9	tcb1
71	STRAWBERRY-POP	STRAWBERRYPOP	79.8	0.0	5.0	40.0	tcb1

¹³ ID de colecta de maíz; ‡ = Promedios de porcentajes; § = alelo de incompatibilidad en bajas frecuencias;

LUG03xW22-TIC-1.1

⁽M-ILL-G9BxP87C5)xW22-TIC-1.1

¹⁶ (M-ILL-G9BxP87C5)xW22-TIC-1.5

La prueba de Dunnett no presentó diferencias significativas para la variable llenado de grano en mazorca de las razas Sudamericanas con el probador hembra *Tcb1-S/-* (Cuadro 40), bajo este criterio estadístico, todas las razas Sudamericanas pueden clasificarse con la sóla presencia del alelo *tcb1*, sin la presencia del alelo de incompatibilidad *Tcb1-S*. Llenados parciales de grano en mazorca estuvieron presentes en algunas accesiones de las razas CHOCOCEÑO, PISANKALLA, PISINGALLO, POLLO, POP-CORN, mayores al 20% (Cuadro 44), con el probador hembra LUG03xW22-TIC-1.1, señalando en estas razas la presencia en bajas frecuencias de alelos del complejo de incompatibilidad del teocintle (TIC/-).

4.5. Líneas de maíz del CIMMyT

Contar con probadores confiables y propios, que no dependan de germoplasma privado, sino que sean de acceso público y con germoplasma sin alelos de incompatibilidad en el género *Zea mays*, se evaluaron líneas del Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMyT) con resultados positivos.

4.5.1. Locus *ga1*

La caracterización respecto a los alelos de incompatibilidad en las líneas de maíz de CIMMyT del locus *ga1*, resultó de gran importancia tanto por el conocimiento obtenido de las barreras de la incompatibilidad como por la adaptación para que sean utilizados como probadores sin factores de incompatibilidad y adaptados a las condiciones climáticas de México.

Las líneas de maíz del CIMMyT evaluadas están tipificadas como germoplasma adaptado a las zonas tropicales, subtropicales y de transición (CIMMyT, 1998).

Cuadro 45. Constitución alélica propuesta del sistema de incompatibilidad *ga1*, para líneas puras de maíz del CIMMyT, años de evaluación 2007 a 2009, en los campos experimentales del CUCBA.

No.	Genealogía	Alelos detectados
01	(CML-239 x GWIC)-1-23TL-1-2-B	gal
02	B.P.V.C.236-1-2-2-1-TL-B*5	gal
03	CML-242	Ga1-m
04	CML-244	Ga1-m
05	CML-246	Ga1-m
06	CML-349	Ga1-m
07	(CML-464 X CML-175)-1-21TL-2-2TL-B-B	Ga1-m
08	(MES.AM.LIN.ILLxG9B-#-1-2x(89)6304Q/EWE3056)-B-3-2-1-1-2-5)-B-3-5TL-4-27-	Ga1-m

No.	Genealogía	Alelos detectados
	BTL-B-B	
09	(P87C5F111-18-3-4-1-1-1-B x CML-176)-1-15TL-1-6TL-B-B	Ga1-m
10	B.T.Z.T.V.C.PR93A-1-2-B-B x CML-176-1-1-2TL-B	gal
11	CML-175	Ga1-m
12	CML-176	ga1
13	CML-186	Ga1-m
14	CML-321	Ga1-m
15	CML-373	Ga1-m
16	CML-78	gal
	CL 04368	Ga1-m
18	CLQ-RCWQ10	gal
19	CL-SPLW04	gal
20	CML-142	gal
21	CML-144	gal
22	CML-159	ga1
23	CML-247	ga1
24	CML-254	gal
25	CML-491	ga1
26	CML-494	ga1
27	CML-495	gal
28	CML-503	ga1
29	Pob501C3F2 16-5-1-1-B-B-B-B	ga1
30	Pob502C3F2 10-3-2-1-B-B-B-B	Gal-m

De las 30 líneas evaluadas 17 resultaron homocigotas recesivas para el alelo *ga1*, que representa el 56.7% y 13 fueron homocigotas para el alelo *Ga1-m* con 43.3% (Cuadro 45). Con estos resultados se identificaron líneas puras con posibilidades de ser considerados como probadores sin factores de incompatibilidad.

4.6. Distribución geográfica de los sistemas de incompatibilidad *ga1* y *tcb1* en las razas de maíz de México y de Sudamérica.

La distribución geográfica de los sistemas de los genes de incompatibilidad de los loci *ga1* y *tcb1* de las razas de maíz de México y de Sudamérica, presentaron un patrón para las razas de México DULCILLO-DEL-NOROESTE, REVENTADOR, ELOTES-OCCIDENTALES y MAÍZ-DULCE en ambos loci de incompatibilidad, sobre todo en las dos últimas razas mencionadas. De la Cruz (2007) señaló que el alelo *Ga1-S* mantiene una distribución para el occidente, el noroeste de México y Valles Centrales de Oaxaca. A continuación se muestra la distribución geográfica en México y Sudamérica de los sistemas de incompatibilidad *ga1* y *tcb1* (Figura 7).

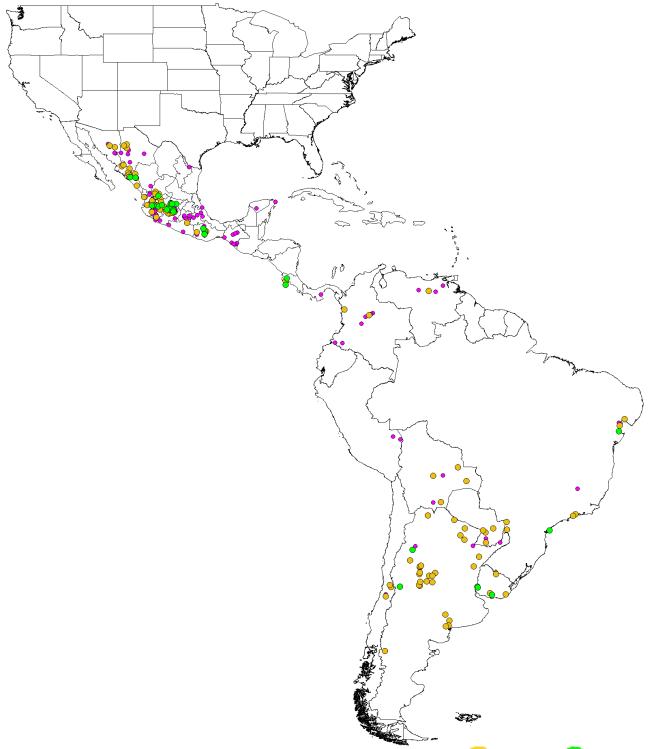


Figura 7. Distribución geográfica de los alelos de incompatibilidad *Ga1-S* () y TIC/- (), y de las accesiones sin alelos de incompatibilidad () en México y Sudamérica.

4.7. Protocolo de transferencia de genes de incompatibilidad a maíz: caso QPM.

En la producción de semillas los incrementos y mantenimiento de la pureza genética tanto de líneas parentales como de la formación de los híbridos, las empresas productoras de semillas enfrentan esta problemática. Por lo que se propone un sistema adecuado de multiplicación para abatir el grave problema que enfrentan los mejoradores y promotores del QPM, que es la pérdida del gene de calidad de proteína, transfiriendo genes de alguno de los dos sistemas de incompatibilidad genética estudiados en el presente trabajo, y que aísle a los QPM's del resto del maíz normal, en especial el alelo *Tcb1-S* por presentar estigmas con mayor poder discriminatorio del grano de polen contaminante del maíz normal.

A continuación se describirá a grandes rasgos la metodología propuesta y los puntos de atención que no se deben de perder de vista.

Para el desarrollo de un protocolo de transferencia de genes de incompatibilidad a poblaciones de "usos especiales" de maíz (QPM, elotero, dulce, etc.), se recomienda el método convencional de la retrocruza recurrente (Figura 8), el cual agregará al progenitor recurrente los alelos de incompatibilidad o el mecanismo de reconocimiento o rechazo de los estigmas del grano de polen del maíz normal para el mantenimiento de la pureza varietal y de la semilla original, y además de resultar la retrocruza efectiva y ampliamente probada. El método genealógico que cruza al maíz Sin-QPM con maíz QPM, conlleva mayor tiempo e inversión de recursos humanos y económicos.

No deberá faltar la mesa de luz y el laboratorio de análisis bioquímico y molecular (para detecciones en campo de estadios tempranos de plántula con el alelo *o2* (Vivek *et al.*, 2008) y sobre todo líneas élite que se quieren transferir los genes de incompatibilidad.

El alelo *o2* se hereda de manera simple y recesiva, y la presencia del *o2* en estado homocigoto recesivo (*o2o2*) es indispensable para poder obtener maíz con alto contenido de lisina y triptófano (Vivek *et al.*, 2008). Si la mayoría de las características de importancia económica de maíz tienen una herencia compleja y que son influenciadas por el medio ambiente, hace que la selección de tales características sea más difícil y con asignación de recursos intensivos. En este caso específico, transferir genes de incompatibilidad a maíces de usos especiales, no se debe de perder la característica de rendimiento y otras tantas características fenotípicas deseables del progenitor recurrente. Las estimaciones de heredabilidad ayudan al mejorador en la selección eficaz de los

rasgos de interés y por lo tanto lograr una ganancia genética máxima con un mínimo de tiempo y de recursos. Smalley *et al.* (2004) proponen para la estimación de la heredabilidad el método de **regresión padre-hijo**, sobre la base de que los caracteres a seleccionar son heredables de padre a hijos o descendencia, y que para la precisión y validez de los datos de heredabilidad, el tamaño de la parcela y el número de las plantas que lo componen es muy importante, además del número de repeticiones y de ambientes de evaluación, que incluyen localidades, años o ambos.

Con respecto a la aptitud combinatoria general, se buscará no perder los patrones heteróticos de las líneas originales, bajo el supuesto de sólo incorporar genes de incompatibilidad y no alterar o eliminar la heterosis de los progenitores del híbrido.

Podrán ser dos los caminos para incorporar los genes de incompatibilidad al material QPM:

Para el locus tcb1:

- ✓ Sólo transferir el gen de incompatibilidad *Tcb1-S* exclusivamente como progenitor macho, ya que en estado heterocigoto discriminan los estigmas, (para el caso de la hembra), si fuera en el macho, el grano de polen hará su función de rechazo al grano de polen extraño en el híbrido resultante.
 - La formación del híbrido se realizará en lotes aislados
 - El híbrido resultante, no será contaminado por el grano de polen de híbridos adyacentes en las parcelas del productor.
 - El híbrido conservará el genotipo o2o2 y Tcb1-S/- y por tanto la calidad de proteína.
- ✓ Transferir los genes de incompatibilidad en ambos progenitores:
 - Los lotes de formación del híbrido se podrá realizar sin el aislamiento necesario para evitar la contaminación por grano de polen extraño, siempre y cuando no exista otro maíz o teocintle con el este gene cerca.
 - Igualmente, el híbrido no será contaminado por grano de polen extraño y no diluirá ni se eliminara el gen o2 que confiere la calidad de la proteína.

Para el locus ga1:

- ✓ La transferencia de los genes de incompatibilidad *Ga1-S*, será obligado para ambos progenitores, ya que la barrera de reconocimiento y discriminación del grano de polen extraño funciona perfectamente en estado homocigoto dominante.
 - Los lotes de formación del híbrido se podrán realizar sin aislamiento de otras parcelas No-QPM.
 - El híbrido resultante no será contaminado por grano de polen extraño y no se pierde el gen o2 que le confiere la calidad de la proteína.

En todos los casos, el aislamiento se deberá realizar cuidando no halla parcelas de maíz con maíces criollos o silvestres, ya que estos podrían contener similares genes a los incorporados en la(s) línea(s) y el aislamiento reproductivo no sería eficaz bajo esta premisa.

Cabe resaltar la importancia del trabajo a realizaren cada etapa. Por cada ciclo de avance generacional, la selección del material con genes de incompatibilidad, se debe probar la existencia de dichos genes en las plantas a ser seleccionadas, con alguno de los probadores del presente estudio, según el sistema que se quiera agregar a las líneas del QPM, por lo que esto añadiría un ciclo más de evaluación con la semilla del remanente, posterior a la identificación del gen de interés.

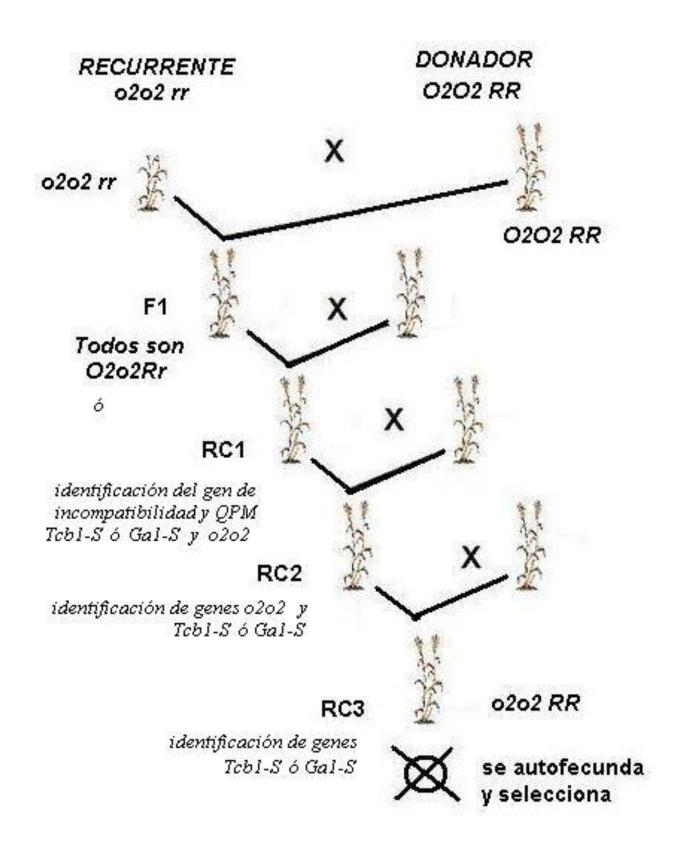


Figura 8. Método de retrocruzamiento hacia el alelo dominante.

Por último los ciclos de retrocruza será mínimo tres (Figura 9), los cuales pasarían a ser probados para la incompatibilidad con el probador LUG03xTIC-1.1, por ser la mejor fuente de incompatibilidad que arrojo el presente estudio y a la vez puede ser el progenitor DONADOR al primer cruzamiento de transferencia.

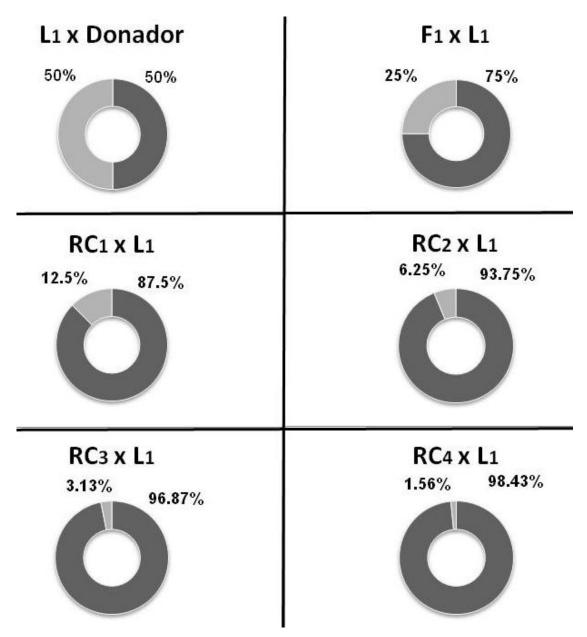


Figura 9. Porcentajes del proceso de incorporación del progenitor no recurrente o donador (color gris claro) y recuperación del progenitor recurrente (color gris oscuro).

En la etapa del tercer retrocruzamiento (RC₃), se tiene en el progenitor recurrente el 93.75% *vs* 6.26% de germoplasma del donador.

Uso de marcadores morfológicos:

En un protocolo de transferencia de genes de incompatibilidad al maíz de uso especial elegido, el método de retrocruzamiento debe ir acompañado de los siguientes pasos:

- 1. La evaluación de presencia del genes de incompatibilidad de interés será mediante la prueba en la progenie de cada retrocruza con probadores de genotipo conocidos (De la Cruz (2007) De la Cruz *et al.* (2008a y 2008b)
- 2. Cruzas directas y recíproca con probadores dominantes y probadores recesivos
- 3. Manejo de al menos un marcador morfológico muy recurrido como lo es el color de grano. Por el contraste del color de grano (Kermicle *et al.*, 2006), se puede realizar una primer identificación de presencia del gene de interés en el progenitor recurrente, por lo que es conveniente usar colores diferentes entre los materiales a incorporar los genes de incompatibilidad con el probador, para ambos loci.
- 4. El paso posterior será la reconversión de color (si se considera necesario).

V. DISCUSIÓN

La selección de mejores probadores homocigotes *Ga1-S/Ga1-S*, concuerda en gran parte con De la Cruz (2007) y De la Cruz *et al.* (2008b), adicionalmente se identificaron otros materiales con desempeño superior en la discriminación, además de ser confiables y estables. Durante el proceso de análisis para la elección de mejores probadores, los resultados obtenidos prueban que los efectos genéticos de los alelos de incompatibilidad no son afectados por los factores externos, y cumplen su función discriminatoria correctamente. Respecto a los probadores para el locus *tcb1*, se encontró que al usarlos con germoplasma de gran diversidad, puede existir inestabilidad. Parece ser que el problema fue elegir únicamente probadores recesivos uniformes, quizá faltó usar todos los alelos de incompatibilidad conocidos para la elección de los probadores, además de materiales de amplia diversidad genética.

Cuando las razas Mexicanas y Sudamericanas, poblaciones de amplia base genética, polinizaron a los probadores hembra procedentes del CIMMyT (M-ILL-G9BxP87C5)xW22-TIC-1.1 y (M-ILL-G9BxP87C5)xW22-TIC-1.5, su respuesta fue sin consistencia, mientras que el probador LUG03xW22-TIC-1.1, su respuesta obtenida fue muy consistente. La inconsistencia de algunos probadores probablemente pueda explicarse por la interacción interna de reordenamientos cromosómicos o de epítasis interlocus según Moyle y Graham (2005) y Koide *et al.* (2008) con interacciones multialélicas. Esto es congruente con lo sucedido para el maíz de alta calidad de proteína QPM, en que Bjarnason y Vasal (1992) reportaron la presencia de un gran número de modificadores del endospermo, que son controlados poligénicamente. Los genes de incompatibilidad se complementan para manifestar una barrera efectiva en los estigmas, y además de requerir de la acción estabilizadora de un gene modificador ligado a *Tcb1* y *Ga1* según lo reportan Evans y Kermicle (2001). Haciendo énfasis que las razas son consideradas de amplia base genética, la inestabilidad que mostraron quizás es debida a la presencia o ausencia tanto de genes inhibidores como de genes modificadores de la incompatibilidad de forma aleatoria en cada raza de maíz; en cambio los híbridos comerciales mostraron estabilidad por contener estrecha base genética.

Aparentemente los genes de incompatibilidad trabajan independientemente, según lo han descrito Evans y Kermicle (2001), Kermicle *et al.* (2006), De la Cruz (2007), De la Cruz *et al.* (2008a y 2008b). Pero en su último estudio Kermicle y Evans (2010) reportan interacciones entre los loci *tcb1* con *ga1* e interacción de *ga1* con *ga2*.

Para Bedinger y Fowler (2009) las bases mecánicas de los efectos de la incompatibilidad son desconocidos, incluso si estos loci son genes individuales, o grupos de genes estrechamente ligados e incluso soportan la idea de que la fecundidad del grano de polen se ve afectada por genes expresados por ambos sistemas, tanto esporofítico como gametofítico. En cambio Robert *et al.* (1992) reportan que el mantenimiento de la estructura fenotípica de la forma cultivada, se da por el control del flujo de genes entre poblaciones silvestres y cultivadas, producto de la dinámica de la domesticación en cereales en áreas donde las formas silvestres emparentadas son numerosas.

El locus *tcb1* tuvo mejor comportamiento como barrera de la incompatibilidad, presentando alta capacidad discriminatoria y de estabilidad (Evans y Kermicle, 2001; Kermicle y Evans, 2005; Kermicle *et al.*, 2006; Kermicle, 2006). Kermicle (2001) reporta que los factores gametofíticos violan el supuesto mendeliano de que la transmisión de los alelos a la progenie es independiente de la constitución que los gametos contengan, más tarde Kermicle y Evans (2005) reportan que los genes actúan independientemente y que la sola existencia de un alelo incompatible es suficiente para bloquear la fertilización. Kermicle *et al.* (2006) señalan que los factores gametofíticos de la incompatibilidad, además de ser agentes de aislamiento reproductivo, previenen la formación de híbridos mal adaptados.

Para un certero y apropiado conocimiento de la estructura genética de los híbridos comerciales una gran limitante es que la evaluación se realiza sin conocer si se trata de híbridos simples, simples modificados, trilineales, dobles o intervarietales, debido a secretos comerciales de los materiales en estudio. Aún cuando se logren obtener probadores, macho o hembra, que clasifiquen y discriminen correctamente sin conocer el origen y el pedigrí del material a prueba (De la Cruz *et al.*, 2008b), sean poblaciones de estrecha base genética como de amplia base genética, sería necesario el avance generacional del material a prueba. Adicionalmente, los individuos dentro de la muestra deberán usarse tanto con los probadores recesivos como con los dominantes, con el fin de conocer la frecuencia alélica de cada muestra o material a prueba. De esta manera la clasificación genotípica y la estructura genética podrán evaluarse sin sesgos.

Es de suma importancia no haber encontrado el alelo *Tcb1-S* en los híbridos comerciales que se siembran en México, ya con el continuo intercambio de semillas por parte de los agricultores mexicanos (Louette, 1997) el problema se agravaría con contaminaciones de polen con éste alelo.

Con respecto a lo reportado por Kermicle y Allen (1990) son necesarios uno o más factores modificadores para que la barrera exprese fuertemente su rechazo al grano de polen sin los factores de incompatibilidad. Evans y Kermicle (2001) y Kermicle (2001) señalan que los estigmas que contienen el alelo *Tcb1-S* y el modificador de estabilización o genes modificadores, presentan barreras más fuertes de rechazo para un eficiente aislamiento reproductivo basado en el reconocimiento de aceptación o rechazo del pistilo-polen, y que además las líneas parentales hembra sufran otro efecto epistático o complementario al recibir el grano de polen de las diferentes razas Mexicanas y Sudamericanas y que pueden activar interacciones multialélicas (Koide *et al.*, 2008).

Evans y Kermicle (2001) reportaron al alelo *Tcb1-S* como raro o ausente de las poblaciones de maíz, sin embargo al ampliar las muestras, el alelo fue encontrado en más razas de maíz. Kermicle *et al.* (2006) y Kermicle (2006) hacen referencia que conviven razas de maíz con teocintle de las especies *Zea mays subsp. mexicana* y Z. *mays subsp. parviglumis* en México con las razas CHALQUEÑO, CRISTALINO-DE-CHIHUAHUA, CÓNICO, CÓNICO-NORTEÑO, HARINOSO-DE-OCHO, OLOTÓN, PEPITILLA, TABLONCILLO y en éstas mismas razas en el presente estudio no presentan los alelos del complejo de incompatibilidad del teocintle (TIC/-).

Los alelos del complejo de incompatibilidad del teocintle (TIC) tienen una restringida dispersión y presencia. Las siguientes razas Mexicanas que presentaron en la misma accesión ambos sistemas de incompatibilidad tanto del complejo de incompatibilidad del teocintle TIC/- como del locus gal (Gal-S/Gal-S) fueron: DULCILLO-DEL-NOROESTE, ELOTES-OCCIDENTALES, MAÍZ-DULCE y REVENTADOR, y en los palomeros de las razas de Sudamérica: CHOCOCEÑO (accesión de Costa Rica), PISANKALLA y PISINGALLO (accesiones de Argentina y Uruguay), y POP-CORN (accesión de Brasil). El aislamiento reproductivo que Kermicle et al. (2006) y Kermicle (2006) señalan, acabaría rompiéndose con la presencia del gene Tcb1-S, con potencial de dispersión y fijación, que añade diversidad genética en las poblaciones de maíces locales, aunado al intensivo intercambio de semillas que se da entre los agricultores mexicanos. Matsuoka et al. (2002) reportan migraciones de maíz desde México hacia Sudamérica y consideran que al maíz (Zea mays spp. mays) producto de múltiples domesticaciones, independiente de su progenitor silvestre (teocintle), como causa de la diversidad morfológica y genética que existe dentro del maíz y Cardona (2010) identificó en razas colombianas a factores de evolución que contribuyeron a la formación de dichas razas en Colombia, además del aislamiento geográfico, la hibridación de maíces con germoplasma del teocintle procedentes de México e hibridación interracial, dicho estudio contempla las razas PIRA (raza primitiva) y CHOCOCEÑO (raza híbrida originada en Colombia) y además considera a Colombia como centro de convergencia, de difusión y de origen de nuevas variedades. La raza Mexicana NEGRITO y las razas Sudamericanas CHOCOCEÑO, PISANKALLA, PISINGALLO, POLLO y POP-CORN presentan sólo el alelo del complejo de la incompatibilidad TIC/- en bajas frecuencias, probablemente por hibridaciones pasadas consecutivas con poblaciones de teocintles que contienen éste gen (Evans y Kermicle, 2001). Bird y Goodman (1977) reportan que las colecciones y la descripción de los palomeros aún no están completas, por lo que los complejos no están definidos, y que también numerosas colecciones de las razas de los palomeros parecerían únicas.

Kermicle *et al.* (2006) señala que es posible que el alelo *Ga1-S*, responsable de la incompatibilidad no-recíproca, sea en si un modificador, para el fortalecimiento de otros sistemas de barrera de incompatibilidad como el locus *tcb1*, y que además del aislamiento reproductivo de los genes de incompatibilidad, los alelos *Ga1-S* y *ga1* podrían fijarse en diferentes taxones; y que el polimorfismo en una población o la sola presencia del alelo neutro, *Ga1-m*, pondrían en peligro el aislamiento reproductivo para el sistema de incompatibilidad *ga1*. Kermicle *et al.* (2006) señalan que de manera independiente o de forma interactiva, *Ga1-S* y *Tcb1-S* son buenos candidatos para la prevención de que los teocintles sean fertilizados por poblaciones de maíz simpátricas. Los argumentos son que a través de la hibridación, introgresión (Kermicle y Allen, 1990) y retrocruzamiento natural y secuencial (Evans y Kermicle, 2001) las poblaciones de maíz y teocintle han adquirido las mismas combinaciones de factores de incompatibilidad de los loci *ga1* y *tcb1*, además de jugar el rol de aislamiento reproductivo entre ambas especies (Kermicle y Allen, 1990) y que la barrera es unidireccional y de herencia simple (Evans y Kermicle, 2001) para los sistemas de incompatibilidad hasta hoy reportados.

Se destaca que en las razas Sudamericanas de maíz no es clara la tendencia del alelo de incompatibilidad *Ga1-S*, porque no se encontró en las colecciones tipo maíz dulce, a diferencia de la raza Mexicana MAÍZ-DULCE que si lo contiene conjuntamente con el complejo de incompatibilidad del teocintle TIC. Pocas instituciones de investigación del sector público reportaron formación de líneas de maíz tipo dulce (Vega *et al.*, 1998).

Finalmente, se buscó material germoplásmico de acceso público para la formación de probadores de la incompatibilidad a fin de ser incorporados a los programas de clasificación genotípica de la incompatibilidad. El germoplasma evaluado del CIMMyT reportó a 17 líneas sin factores de

incompatibilidad, y con un desarrollo vegetativo desde intermedio hasta tardío, por lo que falta encontrar líneas precoces que aporten grano de polen a materiales de igual desarrollo vegetativo.

Si las compañías privadas están realizando una reconversión de sus líneas convencionales a transgénicas (líneas isogénicas), y las líneas de las cuales son transformadas llevan el alelo neutro *Ga1-m*, sus híbridos transgénicos contaminaran tanto al maíz local de híbridos convencionales como de razas y parientes silvestres, con la sóla excepción de que éstos últimos contengan alguno de los alelos del complejo de incompatibilidad TIC ó el alelo dominante *Ga2-S*. De los híbridos comerciales sembrados en México por las empresas Dow, Monsanto y Pioneer fueron evaluados 2, 39 y 47 híbridos respectivamente, los cuales presentaron el alelo neutro *Ga1-m* con el 100%, 76.9% y 42.6% respectivamente (Apéndice, Cuadro 1A), con base en los resultados antes mencionados y la probabilidad de que los híbridos transgénicos contengan en su genoma éste alelo neutro, *Ga1-m*, es alta y puediera estar presente en los híbridos transgénicos que estén en proceso de ser librerados en territorio mexicano. Éstas tres empresas han presentado ante la Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA) solicitudes de "evaluaciones piloto" y a Monsanto se le aprobó sembrar una de éstas evaluaciones en el estado de Sonora, en marzo de 2011 (Enciso y Gómez, 2011), con presencia de razas Mexicanas en Sonora, nicho de genes raros y únicos, en bajas frecuencias alélicas (Sánchez *et at.*, 2000b).

Los estudio de los sistemas de incompatibilidad en el género Zea son importantes, ya que al existir una adecuada caracterización genética en este aspecto de los sistemas de incompatibilidad gal, tcbl y ga2, serían de gran utilidad para la producción de nuevas variedades o híbridos para ser usados por los agricultores en la obtención de productos orgánicos, maíz de usos especiales y maíz libre de organismos modificados genéticamente (OMGs). En regiones de Latinoamérica, en que aún se encuentran razas de maíz y poblaciones de teocintle, la información generada de su constitución genotípica de la razas y parientes silvestres y de la constitución genotípica de los híbridos comerciales, serán de gran utilidad e importancia para la planeación de programas de monitoreo y de conservación in situ de los despachos gubernamentales y de las ONG's.

CONCLUSIONES

Las barreras genéticas expresadas en los diferentes probadores debidas a los alelos *Ga1-S* y *Tcb1-S*, no son afectadas por efectos ambientales. Las diferencias observadas entre probadores se atribuyen a la presencia de modificadores o inhibidores de la acción de dichos genes.

Con base en evaluaciones detalladas y a la combinación entre germoplasma templado, subtropical y tropical, se identificaron probadores con alta capacidad discriminatoria y adaptación a la región de Jalisco, México, y además presentaron buen comportamiento agronómico.

Los probadores obtenidos mostraron gran estabilidad en diferentes años y serán de gran utilidad en la caracterización de germoplasma respecto a los loci *ga1* y *tcb1*. Las mejores líneas incluyen NC354, NC452, NC462, W22P4830, W22-TIC-1.1, LUG03 Y LUG282.

Existen genes con efectos inhibidores y modificadores dentro de las líneas y las razas de maíz que pueden afectar la respuesta de la incompatibilidad con los probadores macho y hembra, por lo que la elección de probadores nuevos requiere de una evaluación detallada para evitar clasificaciones dudosas.

Ninguno de los genes responsables de la incompatibilidad no recíproca se encontró en los híbridos comerciales de maíz evaluados, sin embargo, debido a la presencia en altas proporciones del alelo neutro *Ga1-m*, las barreras existentes en las razas de maíz y del teocintle pueden ser no suficientes para evitar el flujo genético no deseado.

Una contribución muy significativa de este estudio es la identificación de razas de maíz en donde está presente el complejo de incompatibilidad del teocintle (TIC) el cual había sido descrito como único en teocintle. Este descubrimiento puede ser aprovechado en la producción de semillas y en productos de usos especiales con gran éxito.

La incorporación de alguno de los alelos de incompatibilidad *ga1* ó *tcb1*, permitirá mantener la pureza varietal de la semilla original y a evitar la contaminación genética en los lotes de producción de semillas y en la calidad del producto final de los maíces de "usos especiales".

LITERATURA CITADA

- ANDORF C.M., C.J. LAWRENCE, L.C. HARPER, M.L. SCHAEFFER, D.A. CAMPBELL, and T.Z. SEN. 2010. The locus lookup tool at maize GDB: identification of genomic regions in maize by integrating sequence information with physical and genetic maps. Bioinformatics **26**: 434-436.
- ARIAS D. M., and L. H. RIESEBERG. 1994. Gene flow between cultivated and wild sunflowers. Theoretical and Applied Genetics **89**: 655-660.
- AYLOR D.E. 2003. Rate of dehydration of corn (*Zea mays* L.) pollen in the air. Journal of Experimental Botany **54**: 2307-2312.
- BALTAZAR M. B., J. J. SÁNCHEZ G., L. DE LA CRUZ L. and J. B. SCHOPER. 2005.

 Pollination between maize and teosinte: an important determinant of gene flow in Mexico. Theoretical and Applied Genetics 110: 519-526.
- BEDINGER P.A. and J.E. FOWLER. 2009. The maize male gametophyte. *In*: Handbook of maize: its biology. J. Bennetzen and S. Hake (eds.). Springer. pp. 57-75.
- BENZ D.F., SÁNCHEZ-VELÁZQUEZ L. R. and SANTANA-MICHEL F. J. 1990. Ecology and ethnobotany of *Zea diploperennis*: preliminary investigations. Maydica **35**: 85-98.
- BIRD R.M. and M.M. GOODMAN. 1977. The races of maize V: Grouping maize races on the basis of ear morphology. Economic Botany **31**:471–481.
- BJARNASON M. and S.K. VASAL. 1992. Breeding of quality protein maize (QPM). Plant Breeding Reviews 9:181-216.
- BRUNNER E. and M.L. PURI. 2001. Nonparametric methods in factorial designs. Statistical Paper **42**:1-52.
- CARDONA J.O. 2010. Análisis de diversidad genética de las razas colombianas de maíz a partir de datos Roberts *et al.* (1957) usando la estrategia Ward-MLM. CienciAgro **2**: 199-207.

- CARGNELUTTI A. F., D. PERECIN, E. BRAGA M. and J. GUADAGNIN. 2007. Comparison of adaptability and stability methods related to grain yield of maize cultivars. Bragantia, Campinas **66**: 571-578.
- CASTILLO G. F., and M. M. GOODMAN. 1997. Research on gene flow between improved maize and landraces. *In*: gene flow among maize landraces, improved maize varieties, and teosinte: implications for transgenic maize. J.A. Serratos, M.C. Willcox and F. Castillo-González (eds.). Mexico, D.F. CIMMYT. pp. 67-72.
- CIMMYT. 1998. A complete listing of improved maize germplasm from CIMMYT. Maize Program Special Report. Mexico, D.F. 94 p.
- CÍNTORA O.C, 1963. Incompatibilidad no-recíproca en algunas colecciones mexicanas de maíz.

 Tesis profesional de Maestría en Ciencias, rama Genética. Facultad del Colegio de Graduados de la B. N. A. 39 p.
- CHEN L. J., D.S. LEE, Z. P. SONG, H.S. SUH and B.R. LU. 2004. Gene flow from cultivated rice (*Oryza sativa*) to its weedy and wild relatives. Annals of Botany **93**: 67-73.
- CRUZ-GARCÍA F., C. N. HANCOCK and B. McCLURE. 2003. S-RNase complexes and pollen rejection. Journal of Experimental Botany **54**: 123-130.
- D'AGOSTINO R.B., A. BELANGER and R. B. D'AGOSTINO. 1990. A Suggestion for using powerful and informative tests of normality. The American Statistician 44: 316-321.
- DE LA CRUZ L.L. 2007. Sistemas de incompatibilidad genética en maíz y teocintle (*Zea* spp.) en México. Tesis de doctorado. Posgrado en ciencias agrícolas y forestales. Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. 81 p.
- DE LA CRUZ L.L., J.J. SÁNCHEZ G., E. RODRÍGUEZ G., J. RON P. y F. SANTACRUZ R. 2007. El factor gametofítico-1 (*ga1*) en Teocintle (*Zea* spp.) en México. Scientia-CUCBA **9**: 129-141.

- DE LA CRUZ L.L., J.J. SÁNCHEZ G., J. RON P., F. SANTACRUZ R., B. BALTAZAR M., J.A. RUÍZ C. y M.M. MORALES R. 2008a. El factor gametofítico-1 (*gal*) en híbridos comerciales de maíz en México. Revista Fitotecnia Mexicana **31**: 57-65.
- DE LA CRUZ L.L., J.J. SÁNCHEZ G., J. RON P., F. SANTACRUZ R., E. RODRÍGUEZ G., J. A. RUÍZ C. y M.M. MORALES R. 2008b. Probadores de maíz para factores de incompatibilidad gametofítica. Revista Fitotecnia Mexicana 31: 341-349.
- DE NETTANCOURT, D. 1993. Self- and cross-incompatibility systems. *In*: plant breeding: principles and prospects. Chapter 13. Chapman & Hall, London. pp. 203-212.
- DEMEREC M. 1929. Cross-sterility in maize. Z Indukt Abstammungs-Vererbungs. 50: 281-291.
- EAST E.M. and A.J. MANGELSDORF. 1925. A new interpretation of the hereditary behavior of self-sterile plants. Proceedings of the National Academy of Sciences **11**: 166-171.
- EBERHART S.A. and W.A. RUSSELL. 1966. Stability parameters for comparing varieties. Crop Science **6**: 36-40.
- EDLUND A.F., R. SWANSON and D. PREUSS. 2004. Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell **16**: S84–S97.
- ELLSTRAND N. C. 1997. Evaluating the risks of transgene flow from crops to wild species. *In*: Gene flow among maize landraces, improved maize varieties, and teosinte: implications for transgenic maize. J.A. Serratos, M.C. Willco, and F. Castillo-González (eds.). Mexico, D.F. CIMMYT. pp. 81-84.
- ENCISO A. y C. GÓMEZ. 2011. Siembra de maíz transgénico pone en riesgo seguridad alimentaria del país: científicos. Periódico La Jornada, viernes 18 de marzo. Pág. 40. Fecha de consulta 03-junio-2011. http://www.jornada.unam.mx/2011/03/18/index.php?section=sociedad&article=040n1soc#texto.
- EMERSON R.A. 1934. Relation of the differential fertilization genes, *Ga ga*, to certain other genes of the *Su-Tu* lineage group of maize. Genetics **19**: 137–156
- EVANS M.M.S. and J.L. KERMICLE. 2001. Teosinte crossing barrier-1, a locus governing hybridization of teosinte with maize. Theoretical and Applied Genetics **103**: 259-265.

- FINLAY K.W. and G.N. WILKINSON. 1963. The analysis of adaptation in a plant-breeding program. Australian Journal of Agricultural Research **14**: 742-754.
- FREI O.M. 2005a. A Gametophytic cross incompatibility gene maize and pollen barrier against GMO contamination. Conference GMO-Coexistence of GM and non-GM crops: scientific data, practical applications and perspectives for the next decade. June 9 and 10, 2005.
- FREI O.M. 2005b. A gametophytic cross-sterility gene in maize and its use as pollen barrier. Conference GMO-Coexistence of GM and non-GM crops: scientific data, practical applications and perspectives for the next decade. June 9 and 10, 2005.
- FREEMAN G.A. 1973. Statistical methods for the analysis of genotype-environment interactions. Heredity **31**: 339-354.
- GLÉMIN S., T. GAUDE, M.L. GUILLEMIN, M. LOURMAS, I. OLIVIERI and A. MIGNOT. 2005. Balancing selection in the wild: testing population genetics theory of self-incompatibility in the rare species *Brassica insularis*. Genetics **171**: 279–289.
- GODÍNEZ H. J.J, J.J. SÁNCHEZ G., J. RON P. y F. SANTACRUZ-RUVALCABA. 2009. Estimación de reducciones en tamaño efectivo de población en teocintle del Occidente de México. Scientia-CUCBA 11: 11-21.
- GUTIERREZ A., A. CARRERA, J. BASUALDO, R. RODRIGUEZ, M. CANTAMUTTO and M. POVERENE. 2010. Gene flow between cultivated sunflower and *Helianthus petiolaris* (Asteraceae). Euphytica **172**: 67-76.
- GUZMÁN R. e ILTIS H.H. 1991. Protección a genes perennes de maíz en una reserva de la biosfera. Diversity 7: 89-92.
- HALLAUER A.R. and J.B. MIRANDA F. 1988. Quantitative genetics in maize breeding. 2nd ed. Iowa State University Press. Ames, IA. 468 p.
- KAO TH and A. G. McCUBBIN. 1996. How flowering plants discriminate between self and non-self pollen to prevent inbreeding. Proceedings of the National Academy of Sciences **93**: 12059-12065.

- KERMICLE J.L. 1997. Cross compatibility within the genus *Zea. In*: Gene flow among maize landraces, improved maize varieties, and teosinte: implications for transgenic maize. Serratos, Willcox and Castillo (Eds). Mexico, D.F. CIMMYT. pp. 40-43.
- KERMICLE J.L. 2001. Genetic barriers that restrict hybridization in corn and teosinte. Annual Corn and Sorghum Seed Research Conference **56**:17-24.
- KERMICLE J.L. 2006. A selfish gene governing pollen-pistil compatibility confers reproductive isolation between maize relatives. Genetics **172**: 499–506.
- KERMICLE J.L. and J.O. ALLEN. 1990. Cross-incompatibility between maize and teosinte. Maydica **35**: 399-408.
- KERMICLE J.L. and M.M.S. EVANS. 2005. Pollen–pistil barriers to crossing in maize and teosinte result from incongruity rather than active rejection. Sexual Plant Reproduction 18: 187-194.
- KERMICLE J.L. and M.M.S. EVANS. 2010. The *Zea mays* sexual compatibility gene *ga2*: naturally occurring alleles, their distribution, and role in reproductive isolation. Journal of Heredity **101**:1-13.
- KERMICLE J.L., S. TABA and M.M.S. EVANS. 2006. The gametophyte-1 *locus* and reproductive isolation among *Zea mays* subspecies. Maydica **51**: 219-226.
- KOIDE Y., M. IKENAGA, N. SAWAMURA, D. NISHIMOTO, K. MATSUBARA, K. ONISHI, A. KANAZAWA and Y. SANO. 2008. The evolution of sex-independent transmission ratio distortion involving multiple allelic interactions at a single locus in rice. Genetics 180: 409–420.
- LEE C.B., L.E. PAGE, B.A. McCLURE and T.P. HOLTSFORD. 2008. Post-pollination hybridization barrier in *Nicotina* section *Alatae*. Sexual Plant Reproduction **21**: 183-195.
- LIEDL B. and N.O. ANDERSON. 1993. Reproductive barriers: identification, uses and circumvention. Plant Breeding Reviews 11: 11–70.

- LÓPEZ-FANJUL C. and A. GARCÍA-DORADO. 2010. The fuel of evolution. Heredity: 1–2 (Advance online publication, 25 August 2010; doi:10.1038/hdy.2010.110).
- LOUETTE D. 1997. Seed exchange among farmers and gene flow among maize varieties in traditional agricultural systems. *In*: Gene flow among maize landraces, improved maize varieties, and teosinte: implications for transgenic maize. Serratos, Willcox and Castillo (Eds). Mexico, D.F. CIMMYT. pp. 56-66.
- MAGNUSSEN L.S. and T.P. HAUSER. 2007. Hybrids between cultivated and wild carrots in natural populations in Denmark. Heredity **99**: 185–192.
- MALVAR R.A., M.E. CARTEA, P. REVILLA, P. SOENGAS and A. ORDÁS. 2004. Verification of predictions from estimators of favorable alleles to improve yield of sweet corn hybrids. Maydica **49**: 49-55.
- MANGELSDORF P.C. and D.F. JONES. 1926. The expression of Mendelian factors in the gametophyte of maize. Genetics 11: 423-455.
- MARTINEZ R. J.M. and K.P. VOGEL. 2000. Incompatibility systems in switchgrass. Crop Science **42**: 1800-1805.
- MATSUBARA K., K. THIDAR and Y. SANO. 2003. A gene block causing cross-incompatibility hidden in wild and cultivated rice. Genetics **165**: 343-352.
- MATSUOKA Y., Y. VIGOUROUS, M.M. GOODMAN, J. SANCHEZ G., E.S. BUCKLER, and J.F. DOEBLEY. 2002. A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences **99**:6080-6084.
- MATZINGER. 1953. Comparison of three types of testers for the evaluation of inbred lines of corn. Agronomy Journal **45**: 493-495.
- MOYLE L.C. and E.B. GRAHAM. 2005. Genetics of hybrid incompatibility between *Lycopersicum* esculentum and *L. hirsutum*. Genetics **169**: 355-373.

- NASRALLAH J.B., J.C. STEIN, M.K. KANDASAMY and M.E. NASRALLAH. 1994. Signaling the arrest of pollen tube development in self-incompatible plants. Science **266**: 1505-1507.
- NAULT L. R. and W. R. FINDLEY. 1982. *Zea diploperennis*: A primitive relative offers new traits to improve corn. Desert Plants **3**:202-205.
- NELSON O.E. 1953. A genic substitute for isolation in hybrid corn seed production. Economic Botany 7: 382-384.
- NELSON O.E. 1996. The gametophyte factors of maize. *In*: The maize Handbook. M. Freeling & V. Walbot (Eds.). Springer-Verlag. p. 496-453.
- NEUFFER M.G., E.H. COE and S.R. WESSLER. 1997. Mutants of maize. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York. pp. 468.
- NOGUCHI K., M. LATIF, K. THANGAVELU, F. KONIETSCHKE, Y.R. GEL and E. BRUNNER. 2011. nparLD: nonparametric analysis of longitudinal data in factorial experiments. R-package version 1.3. http://CRAN.R-project.org/package=nparLD.
- PADILLA G. J.M., J.J. SÁNCHEZ G., J.L. RAMÍREZ D., J.F. CASAS S., J. RON P., M. CHUELA B.y M. AGUILAR S. 2002. Medias y varianzas en variedades sintéticas de maíz con diferentes fuentes de germoplasma de teocintle. Revista Fitotecnia Mexicana **25**:401-409.
- PACHECO C.A.P, C.D. CRUZ and M.X. DOS SANTOS. 1999. Association between Griffing's diallel and the adaptability and stability analyses of Eberhart and Russell. Genetics and Molecular Biology 22: 451-456.
- PALAUDELMÀS M., G. PEÑAS, E. MELÉ, J. SERRA, J. SALVIA, M. PLA, A. NADAL and J. MESSEGUER. 2009. Effect of volunteers on maize gene flow. Transgenic Research 18:583-94.
- PONCET V., F. LAMY, J. ENJALBERT, H. JOLY, A. SARR and T. ROBERT. 1998. Genetic analysis of the domestication syndrome in pearl millet (*Pennisetum glaucum* L., Poaceae): inheritance of the major characters. Heredity 81: 648–658.

- R DEVELOPMENT CORE TEAM. 2010. R: a language and environment for statistical computing.

 R Foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.
- RAWLINGS J.O and D.L. THOMPSON. 1962. Performance level as criterion for the choice of maize testers. Crop Science 2: 217-220.
- RICE E.B., M.E. SMITH, S.E. MITCHELL and S. KRESOVICH. 2006. Conservation and change: a comparison of *In situ* and *Ex situ* conservation of Jala maize germplasm. Crop Science **46**:428–436.
- RIDOUT M.S., X.M. XU and K.R. TOBUTT. 2005. Single-locus gametophytic incompatibility in autotetraploids. Journal of Heredity **96**:430-433.
- ROBERT T., F. LAMY and A. SARR. 1992. Evolutionary role of gametophytic selection in the domestication of *Pennisetum thyphoides* (pearl millet): a two-locus asymmetrical model. Heredity **69**: 372 -381.
- RODRIGUEZ F.J.G., J.J. SANCHEZ G., M. BALTAZAR B., L. DE LA CRUZ L., F. SANTACRUZ R., J. RON P. and J.B. SCHOPER. 2006. Characterization of floral morphology and synchrony among *Zea* species in Mexico. Maydica **51**:383-398.
- RUIZ C. J.A., N. DURÁN P., J.J. SÁNCHEZ G., J. RON P., D.R. GONZÁLEZ E., J.B. HOLLAND and G. MEDINA G. 2008. Climatic adaptation and ecological descriptors of 42 Mexican maize races. Crop Science **48**:1502-1512.
- SAS INSTITUTE INC. 1992. SAS/STAT software: changes and enhancements. SAS Institute Inc., Cary, N. C.: SAS Institute Inc.
- SAS INSTITUTE INC. 2009. SAS/STAT ® 9.2. User's guide, second edition. Cary, N. C.: SAS Institute Inc.
- SAKURAI K., S.K. BROWN and N. WEEDEN. 2000. Self-incompatibility alleles of apple cultivars and advanced selections. Hortscience **35**: 16-119.
- SANCHEZ A. M., M. BOSCH, M. BOTS, J. NIEUWLAND, R. FERON and C. MARIANI. 2004. Pistil factors controlling pollination. Plant Cell **16**: S98–S106.

- SANCHEZ G. J.J., M.M. GOODMAN and J.O. RAWLINGS. 1993. Appropriate characters for racial classification in maize. Economic Botany **47**: 44-59.
- SANCHEZ G. J.J., M.M. GOODMAN and C.W. STUBER. 2000a. Isozymatic and morphological diversity in the races of maize of Mexico. Economic Botany **54**: 43-59.
- SANCHEZ G. J.J., C.W. STUBER and M.M. GOODMAN. 2000b. Isozymatic diversity in the races of maize of the Americas. Maydica **45**: 185-203.
- SCHWARTZ D. 1950. The analysis of case of cross sterility in maize. Proceedings of the National Academy of Sciences **36**: 719-724.
- SHUKLA G.K. 1972. Some statistical aspect of partitioning genotype-environmental components of variability. Heredity **29**: 237-245.
- SMALE M. and T. McBRIDE. 1996. Understanding global trends in the use of wheat diversity and international flows of wheat genetic resources. Part 1 of CIMMYT 1995/96 world wheat facts and trends: understanding global trends in the use of wheat diversity and international flows of wheat genetic resources. Mexico, D.F.: CIMMYT. pp. 1-32.
- SMALLEY M.D., J.L. DAUB and A.R. HALLAUER. 2004. Estimation of heritability in maize by parent-offspring regression. Maydica **49**: 221-229.
- SPIEGEL M.R. y L.J. STEPHENS. 2009. Estadística. Cuarta edición. McGraw-Hill. 577 p.
- TAKEBAYASHI N., P. B. BREWER, E. NEWBIGIN and M. K. UYENOYAMA. 2003. Patterns of variation within self-incompatibility loci. Molecular Biology and Evolution **20**: 1778-1794.
- TANKSLEY S.D. and S.R. McCOUCH. 1997. Seed banks and molecular maps: unlocking genetic potential from the wild. Science **377**: 1063-1066.
- TRUCCO F., M.R. JESCHKE, A.L. RAYBURN and P.J. TRANEL. 2005. *Amaranthus hybridus* can be pollinated frequently by *A. tuberculatus* under field conditions. Heredity **94**: 64-70.

- URETA M. S., M. CANTAMUTTO, A. CARRERA, C. DELUCCHI and M. POVERENE. 2008.

 Natural hybrids between cultivated and wild sunflowers (*Helianthus* spp.) in

 Argentina. Genetic Resources and Crop Evolution **55**: 1267-1277.
- VEGA M.C., E. NAVARRO, J. ESPINOZA, JL. GUERRERO and G.A. BURCIAGA. 1998. Selección de líneas para formar híbridos de maíz dulce ricos en lisina: II líneas. Agronomía Mesoamericana 9: 61-64.
- VIVEK B.S., A.F. KRIVANEK, N. PALACIOS R., S. TWUMASI A. y A.O. DIALLO. 2008.

 Mejoramiento de maíz con calidad de proteína (QPM): protocolos para generar variedades QPM. México, D.F.: CIMMYT. 56 p.
- WALTERS S. A. and T. C. WEHNER. 2002. Incompatibility in diploid and tetraploid crosses of *Cucumis sativus* and *Cucumis metuliferus*. Euphytica **128**: 371-374.
- WELLHAUSEN E.J., L.M. ROBERTS, E. HERNANDEZ X. and P.C. MANGELSDORF. 1952.

 Races of maize in Mexico: their origin, characteristics and distribution. The Bussey

 Institution of Harvard University. 223 p.
- WRICKE G. 1962. Über eine methode zur erfassung der ökologischen streubrerte in feldversuchen. Z. pl. zücht. **47**: 92-96.

VIII. APÉNDICE

Cuadro 1A. Porcentajes de los alelos *Ga1-m* y *ga1* de tres empresas que están solicitando liberación de híbridos transgénicos en México.

	Total de accesiones	Accesiones con Ga1-m	Ga1-m (%)	Accesiones con ga1	ga1 (%)
Pioneer	47	20	42.6	27	57.4
Monsanto	39	30	76.9	9	23.1
Dow	2	2	100.0	0	0.0

Cuadro 2A. Análisis de varianza para parámetros de estabilidad para 15 probadores hembra dominante *Ga1-S/Ga1-S*, para el llenado de grano en mazorca del sistema de incompatibilidad *ga1* bajo el modelo de regresión de EBERHART y RUSSELL (1966), año 2007.

No.	FV	GL	SC	CM	Valor de F	Prob > F			
	Probadores hembra (PH)	14	42103.1095	3007.3650	330.296	0.000	**		
	Probadores macho (PM) (Lineal)	1	1707.6261						
	PH x PM (Lineal)	14	13986.2478	999.0177	109.721	0.000	**		
	Desviación conjunta	45	409.7280	9.1051	0.022	1.000	ns		
	Error conjunto	59		408.9032					
	Total	74	58206.7115						
							Valor de T	Prob > T	\mathbf{R}^2
1	Hy1001xNC296	3	0.5300	0.1767	0.000	1.0000	0.1836	0.8660	0.367
2	Hy1001xNC354	3	0.9791	0.3264	0.001	1.0000	0.1683	0.8771	0.208
3	Hy1001xNC462	3	10.4841	3.4947	0.009	0.9989	1.2922	0.2868	0.592
4	NC348xHy1001	3	77.4200	25.8067	0.063	0.9791	0.5644	0.6120	0.036
5	NC348xW22P4830	3	26.1520	8.7173	0.021	0.9957	0.1366	0.9000	0.006
6	NC348xW22P5270	3	0.1024	0.0341	0.000	1.0000	0.6264	0.5755	0.972
7	NC354xW22P4830	3	1.4902	0.4967	0.001	0.9999	-0.1147	0.9159	0.074
8	NC354xW22P5270	3	0.1779	0.0593	0.000	1.0000	-0.0031	0.9978	0.000
9	W22P4830xNC296	3	0.5249	0.1750	0.000	1.0000	0.0153	0.9887	0.004
10	W22P5270xNC296	3	0.0595	0.0198	0.000	1.0000	-0.0498	0.9634	0.275
11	W22P4830xNC462	3	0.1154	0.0385	0.000	1.0000	0.0170	0.9875	0.022
12	W22P5270xNC462	3	2.7703	0.9234	0.002	0.9999	-0.5558	0.6171	0.504
13	W22P4830xNC396	3	29.6493	9.8831	0.024	0.9949	3.8363	0.0312	0.819
14	W22P5270xNC396	3	117.5868	39.1956	0.096	0.9620	6.0650	0.0090	0.740
15	Hy1001xNC396	3	141.6862	47.2287	0.116	0.9507	40.8577	0.0000	0.991

Donde: FV= fuente de variación; GL= grados de libertad; SC= suma de cuadrados; CM= cuadrado medio; F= valor de tablas prueba de Fisher; T= valor de tablas prueba de una cola (T); R²= coeficiente de determinación.

Cuadro 3A. Análisis de varianza para parámetros de estabilidad para 18 probadores hembra dominante *Ga1-S/Ga1-S*, para el llenado de grano en mazorca del sistema de incompatibilidad *ga1* bajo el modelo de regresión de EBERHART y RUSSELL (1966), año 2008.

No.	FV	GL	SC	CM	Valor de F	Prob > F			
	Probadores hembra (PH)	17	579.5591	34.0917	21.463	0.000	**		
	Probadores macho (PM) (Lineal)	1	85.2426						
	PH x PM (Lineal)	17	551.4280	32.4369	20.421	0.000	**		
	Desviación conjunta	54	85.7744	1.5884	0.198	1.000	ns		
	Error conjunto	89		8.0201					
	Total	89	1302.0041						
							Valor de T	Prob > T	\mathbf{R}^2
1	Hy1001xNC296	3	1.2045	0.4015	0.050	0.9851	0.8536	0.4560	0.490
2	Hy1001xNC354	3	11.2701	3.7567	0.468	0.7051	2.8679	0.0642	0.537
3	Hy1001xNC462	3	0.1498	0.0499	0.006	0.9993	0.2728	0.8027	0.441
4	NC348xHy1001	3	23.7732	7.9244	0.988	0.4022	18.8063	0.0003	0.959
5	NC348xW22P4830	3	0.2623	0.0874	0.011	0.9984	1.2911	0.2872	0.910
6	NC348xW22P5270	3	37.5997	12.5332	1.563	0.2040	-0.5679	0.6098	0.013
7	NC354xW22P4830	3	0.0144	0.0048	0.001	1.0000	-0.0405	0.9702	0.153
8	NC354xW22P5270	3	0.2115	0.0705	0.009	0.9989	-0.2708	0.8041	0.355
9	W22P4830xNC296	3	0.0854	0.0285	0.004	0.9997	-0.0402	0.9705	0.029
10	W22P5270xNC296	3	0.0799	0.0266	0.003	0.9997	0.0439	0.9677	0.037
11	W22P4830xNC462	3	0.3570	0.1190	0.015	0.9975	0.1202	0.9119	0.060
12	W22P5270xNC462	3	1.0551	0.3517	0.044	0.9877	0.8702	0.4482	0.533
13	W22P4830xNC452	3	0.0526	0.0175	0.002	0.9999	0.1265	0.9073	0.326
14	W22P5270xNC452	3	0.2240	0.0747	0.009	0.9988	0.2007	0.8538	0.222
15	NC452xHy1001	3	5.8059	1.9353	0.241	0.8673	5.8858	0.0098	0.905
16	(NC462xNC354)xW22-P4830	3	1.0826	0.3609	0.045	0.9872	0.1671	0.8779	0.039
17	(NC462xNC354)xW22-P5270	3	0.0658	0.0219	0.003	0.9998	-0.2161	0.8428	0.530
18	(NC462xNC354)xHy-1001	3	2.4805	0.8268	0.103	0.9581	0.7095	0.5292	0.244

Donde: FV= fuente de variación; GL= grados de libertad; SC= suma de cuadrados; CM= cuadrado medio; F= valor de tablas prueba de una cola (T); R²= coeficiente de determinación

Cuadro 4A. Análisis de varianza para parámetros de estabilidad para 8 probadores hembra dominante *Tcb1-S/-*, para el llenado de grano en mazorca del sistema de incompatibilidad *tcb1* bajo el modelo de regresión de EBERHART y RUSSELL (1966), año 2007.

No.	FV	GL	SC	CM	Valor de F	Prob > F			
	Probadores hembra (PH)	7	72.7814	10.3973	41.696	0.000	**		
	Probadores macho (PM) (Lineal)	1	15.4929						
	PH x PM (Lineal)	7	45.6404	6.5201	26.147	0.000	**		
	Desviación conjunta	24	5.9847	0.2494	0.102	1.000	ns		
	Error conjunto	37		2.4442					
	Total	39	139.8994						
							Valor de T	Prob > T	\mathbf{R}^2
1	LUG03xW22-TIC1.1	3	0.0105	0.0035	0.001	0.9999	-0.3322	0.7616	0.724
2	LUG03xW22-TIC1.5	3	0.0954	0.0318	0.013	0.9979	0.1626	0.8812	0.065
3	LUG14xW22-TIC1.1	3	0.3251	0.1084	0.044	0.9874	-0.1085	0.9205	0.009
4	LUG14xW22-TIC1.5	3	0.0030	0.0010	0.000	1.0000	-0.1417	0.8963	0.626
5	LUG282xW22-TIC1.1	3	0.0141	0.0047	0.002	0.9999	-0.1247	0.9087	0.215
6	LUG282xW22-TIC1.5	3	0.0581	0.0194	0.008	0.9990	0.7328	0.5167	0.697
7	LUG357xW22-TIC1.1	3	2.1127	0.7042	0.288	0.8337	11.2748	0.0015	0.938
8	LUG357xW22-TIC1.5	3	3.3659	1.1220	0.459	0.7126	10.8312	0.0017	0.897

Donde: FV= fuente de variación; GL= grados de libertad; SC= suma de cuadrados; CM= cuadrado medio; F= valor de tablas prueba de Fisher; T= valor de tablas prueba de una cola (T); R²= coeficiente de determinación

Cuadro 5A. Análisis de varianza para parámetros de estabilidad para 14 probadores hembra dominante *Tcb1-S/* -, para el llenado de grano en mazorca del sistema de incompatibilidad *tcb1* bajo el modelo de regresión de EBERHART y RUSSELL (1966), año 2008.

No.	FV	GL	SC	CM	Valor de F	Prob > F			
	Probadores hembra (PH)	13	21.9981	1.6922	10.915	0.000	**		
	Probadores macho (PM) (Lineal)	1	6.4317						
	PH x PM (Lineal)	13	21.2997	1.6384	10.568	0.000	**		
	Desviación conjunta	42	6.5115	0.1550	0.188	1.000	ns		
	Error conjunto	64		0.8240					
	Total	69	56.2410						
							Valor de T	Prob > T	\mathbf{R}^2
1	LUG03xW22-TIC1.1	3	0.0095	0.0032	0.004	0.9997	0.0952	0.9302	0.129
2	LUG03xW22-TIC1.5	3	0.0065	0.0022	0.003	0.9998	-0.0968	0.9290	0.182
3	LUG14xW22-TIC1.1	3	0.0320	0.0107	0.013	0.9980	0.0178	0.9869	0.002
4	LUG14xW22-TIC1.5	3	0.0617	0.0206	0.025	0.9946	-0.0457	0.9665	0.005
5	LUG282xW22-TIC1.1	3	0.0000	0.0000	0.000	1.0000	0.0000	1.0000	
6	LUG282xW22-TIC1.5	3	0.0000	0.0000	0.000	1.0000	0.0000	1.0000	
7	LUG357xW22-TIC1.1	3	2.4671	0.8224	0.998	0.3996	2.5408	0.0846	0.289
8	LUG357xW22-TIC1.5	3	0.7100	0.2367	0.287	0.8345	8.5215	0.0034	0.941
9	LUG-21xW22-TIC1.1	3	1.3000	0.4333	0.526	0.6661	8.8124	0.0031	0.903
10	LUG-21xW22-TIC1.5	3	1.6115	0.5372	0.652	0.5847	4.6251	0.0190	0.673
11	LUGS17xW22-TIC1.1	3	0.0000	0.0000	0.000	1.0000	0.0000	1.0000	
12	LUGS17xW22-TIC1.5	3	0.0166	0.0055	0.007	0.9992	-0.1477	0.8919	0.169
13	(M-ILL-G9BxP87C5)xW22-TIC1.1	3	0.1531	0.0510	0.062	0.9797	-0.6950	0.5370	0.328
14	(M-ILL-G9BxP87C5)xW22-TIC1.5	3	0.1435	0.0478	0.058	0.9815	0.4721	0.6691	0.194

Donde: FV= fuente de variación; GL= grados de libertad; SC= suma de cuadrados; CM= cuadrado medio; F= valor de tablas prueba de una cola (T); R²= coeficiente de determinación