UNIVERSIDAD DE GUADALAJARA

ESCUELA DE AGRICULTURA

Adaptación de 22 Variedades Mejoradas de Cacahuate (Arachis Hypogaea, L.), en la Zona Central de Veracruz.

JESUS NETZAHUALCOYOTL MARTIN DEL CAMPO MORENO

TESIS

PRESENTADA COMO REQUISITO PARCIAL
PARA OBTENER EL TITULO DE
INGENIERO AGRONOMO
GUADALAJARA, JALISCO, 1978

Esta tesis fué realizada bajo la Dirección y Asesoría del Consejo Particular designado, habiendo sido aprobada por el mismo y aceptada - como requisito parcial para la obtención del título de:

INGENIERO AGRONOMO

GUADALAJARA, JAL., Diciembre de 1978.

CONSEJO PARTICULAR:

DIRECTOR: ING. RAYMUNDO VELASCO NUÑO

ASESOR: ING. ANDRES RODRIGUEZ GARCIA

ASESOR: ING. ELIAS SANDOVAL ISLAS

AGRADECIMIENTOS

Al Instituto Nacional de Investigaciones Agrícolas, de la Secretaria de Agricultura y Recursos Hidráulicos, por las facilidades brindadas para realizar el presente trabajo.

A los Dres. Juan Villanueya Barradas, Director del Centro de Investigaciones Agrícolas del Golfo Centro, y César C. Gallegos B. Coordinador Nacional del Apoyo Multidisciplinario del Programa de Oleaginosas, INIA, SARH, por sus motivaciones, y su franco y dicidido apoyo.

A los compañeros Dr. Manuel A. Rodríguez Peña. y al Ing. y M.S. Juventino Contreras Guillén, por sus valiosas y desinteresadas o-rientaciones.

A los compañeros investigadores del CAE "Cotaxtla", por sus su gerencias, y en especial al C. Félix Lagunes Carvajal, por su colaboración en la conducción de los trabajos de campo.

A las Sritas. Luz María Sosa V., Nelly Méndez L. y Angeles Jiménez C., por la elaboración mecanográfica del escrito original.

DEDICATORIA

Con cariño, admiración y respeto

A mis padres:

Jose de Jesús

Y

María Laura

A mi abuelita:

María Guadalupe

A mis hermanos:

Cástulo Ilhuicamina

Luis Cuitláhuac

Gustavo Cuauhtemoc

•	INDICE	PAGS.
1.	INTRODUCCION	1 .
2.	ANTECEDENTES	3
2.1	Hipótesis de Investigación	3
2.2	Reconocimiento de la Interacción Genotipo-Ambiente	3
2.3	Medidas de la Interacción Genotipo-Ambiente	, 5
2.4	Estimación de Parámetros de Estabilidad	6
2.5	Aplicación de Parámetros de Estabilidad en Diferentes	Cultivos 8
3.	MATERIALES Y METODOS	12
3.1	Ubicación y Caracterización dé las Localidades de Prue	eba 12
3.2	Variedades	12
3.3	Descripción de los Experimentos	15
3.4	Diseño Experimental	18
3.5	Ambiente de Prueba	19
3.6	Análisis Estadísticos	20
4.	RESULTADOS Y DISCUSION	23
4.1	Análisis Individuales	23
4.2	Análisis Conjunto	35
4.2.1	Comportamientos varietales	37
4.2.2	Interacción Genotipo-Medio Ambiente	37
4.2.3	Parametros de Estabilidad	· 4 0

5.	CONCLUSIONES	••••••	• • • • • • • • • •		43
6.	BIBLIOGRAFIA		• • • • • • • • • • • • • • • • • • • •		44
				•	
		•			
				•	

.

•

INDICE DE CUADROS

CUADRO	1	DESCRIPCION DE LOS VALORES QUE PRESENTAN LOS PARAMETROS DE ESTABILIDAD, SEGUN CARBALLO (1970).
CUADRO	2	SITIOS DE PRUEBA, CON SUS CARACTERISTICAS CLIMATOLOGICAS SEGUN GARCIA (1973).
CUADRO	3	RELACION DE MATERIALES ESTUDIADOS, MOSTRANDO EL TIPO DE VARIEDAD, LUGAR EN DONDE FUE COLECTADO Y AÑO DE COLECCION.
CUADRO	4	RANGO DE VARIACION DE LAS CARACTERISTICAS AGRONO- MICAS DE LAS 22 VARIEDADES UTILIZADAS.
CUADRO	5	DESCRIPCION DE LOS AMBIENTES DE PRUEBA DE LAS 22 VARIEDADES DE CACAHUATE.
CUADRO	6	ANALISIS DE VARIANZA, EBERHART Y RUSSELL (1966).
CUADRO	7 :	ANALISIS DE VARIANZA DEL EXPERIMENTO CONDUCIDO EN EL CAE COTAXTLA, DURANTE EL CICLO DEL VERANO DE 1975.
CUADRO	8	RENDIMIENTO MEDIO, SIGNIFICANCIA ESTADISTICA Y CA RACTERISTICAS AGRONOMICAS DE 22 VARIEDADES MEJORA
		DAS DE CACAHUATE, EN EL AMBIENTE 1.
CUADRO	9	ANALISIS DE VARIANZA DEL EXPERIMENTO CONDUCIDO EN EL CAE COTAXTLA, DURANTE EL CICLO INVIERNO-PRIMA- VERA DE 1976.
CUADRO	10	RENDIMIENTO MEDIO, SIGNIFICANCIA ESTADISTICA Y CA RACTERISTICAS AGRONOMICAS DE 22 VARIEDADES MEJORA

DAS DE CACAHUATE, EN EL AMBIENTE 2.

- CUADRO 11. ANALISIS DE VARIANZA DEL EXPERIMENTO CONDUCIDO EN
 LA TORRECILLA, VER., DURANTE EL CICLO DEL VERANO
 DE 1976.
- CUADRO 12. RENDIMIENTO MEDIO Y CARACTERISTICAS AGRONOMICAS

 DE 22 VARIEDADES MEJORADAS DE CACAHUATE, EN EL AMBIENTE 3.
- CUADRO 13. ANALISIS DE VARIANZA DEL EXPERIMENTO CONDUCIDO EN PORTEZUELO, VER., DURANTE EL CICLO DEL VERANO DE 1976.
- CUADRO 14. RENDIMIENTO MEDIO, SIGNIFICANCIA ESTADISTICA Y CA RACTERISTICAS AGRONOMICAS DE 22 VARIEDADES MEJORA DAS DE CACAHUATE, EN EL AMBIENTE 4.
- CUADRO 15. ANALISIS DE VARIANZA DEL EXPERIMENTO CONDUCIDO EN

 LA TORRECILLA, VER., DURANTE EL CICLO INVIERNO-PRI

 MAVERA DE 1977.
- CUADRO 16. RENDIMIENTO MEDIO, SIGNIFICANCIA ESTADISTICA Y CA RACTERISTICAS AGRONOMICAS DE 22 VARIEDADES MEJORA DAS DE CACAHUATE, EN EL AMBIENTE 5.
- CUADRO 17. VARIEDADES QUE OBTUYIERON DIFERENCIA ESTADISTICA SIGNIFICATIVA AL 5 %, CUANDO MENOS EN DOS AMBIENTES.
- CUADRO 18. CLASIFICACION DE LOS AMBIENTES DE PRUEBA, POR SUS RENDIMIENTOS MEDIOS.
- CUADRO 19. RENDIMIENTOS MEDIOS VARIETALES AGRUPADOS POR AMBIENTES DE PRUEBA.
- CUADRO 20. ANALISIS DE VARIANZA PARA EL CALCULO DE LOS PARA-METROS DE ESTABILIDAD.

CUADRO 21. RENDIMIENTO MEDIO Y PARAMETROS DE ESTABILIDAD DE 22 VARIEDADES DE CACAHUATE.

INDICE DE FIGURAS

- FIGURA 1. LOCALIZACION GEOGRAFICA DE LOS SITIOS DE PRUEBA
- FIGURA 2. ESTIMACION DE LA RESPUESTA DE CINCO VARIEDADES A LOS AMBIENTES DE PRUEBA.

Se estudió la adaptación de 22 variedades de cacahuate, en la zona central del Estado de Veracruz, con respecto a cinco ambientes relacionados con el área del cultivo, y con variaciones en los ciclos de siembra; a fin de evaluar la respuesta de las mismas a los cambios ambientales.

El trabajo se realizó con los resultados obtenidos de cinco experimentos, llevados a cabo en tres localidades y dos ciclos; del verano de 1975 al invierno-primavera de 1977. Se analizaron estadís ticamente los datos colectados del rendimiento en ton/ha, primeramente en forma individual con un diseño de bloques calcazar con cua tro repeticiones; posteriormente en forma conjunta, se obtuvo el análisis de varianza propuesto por Eberhart y Russell (1966), para estimar los parametros de estabilidad.

De acuerdo a los resultados, se obtuvieron las siguientes conclusiones:

- a) Las variedades que se seleccionaron por sus altos rendimientos y estabilidad fueron R-F-123, del tipo Virginia, y Tuxpan- 2, y Tautui- 76 del tipo Español. Estas variedades se consideraron deseables por su ausencia de interacción genotipo-ambiente.
- b) Para las condiciones particulares del trabajo, se encontró que cinco ambientes de prueba fueron suficientes para evaluar al grupo de 22 variedades.
- c) Usar los parámetros de estabilidad, además de el promedio del testigo regional permitió probar más eficientemente la superio ridad estadística del rendimiento, ya que se tuvo una mayor se veridad en la selección.

1. INTRODUCCION

El cultivo del cacahuate (Arachis hypogaea, L.), por sus varia dos usos, se ha convertido actualmente en uno de los cultivos mejor cotizados, en nuestro mercado interno.

La Información Estadística y Agropecuaria (1971), reporta en sus datos preliminares, que durante el año de 1970, la producción nacional de cacahuate fué de 89,602 ton, habiéndose sembrado una su perficie de 64,578 has; con un rendimiento medio de 1,387 kg/ha.

En el Estado de Veracruz, la Dirección General de Agricultura (1976), indica que anualmente son cultivadas un total de 167 has, con un rendimiento medio de 2,425 kg/ha, alcanzando su producción un valor de \$ 1,367,500.

El Instituto Nacional de Investigaciones Agrícolas estábleció un programa de investigación en el Estado de Veracruz, con sede en el Campo Agrícola Experimental Cotaxtla a partir de 1972, el cual se inició introduciendo variedades mejoradas, de las principales zonas productoras de la República, evaluando su comportamiento y grado de adaptación en la zona central del Estado.

En el presente trabajo se analizarán en conjunto los resultados obtenidos en cinco experimentos con 22 variedades mejoradas cada uno, en tres localidades bajo condiciones de riego y temporal, en fectuados de julio de 1975 a febrero de 1977.

Las condiciones en que fueron probadas muestran diferencias am bientales muy marcadas, involucrándose años, localidades, ciclos de siembra, suelos, etc., además las variedades utilizadas tienen diferentes orígenes.

El objetivo del presente trabajo, es seleccionar a las varieda

des que mejor se adapten a la zona central del Estado de Veracruz, analizando por rendimiento, el comportamiento de las mismas y el promedio del testigo regional, en relación a su interacción con el medio ambiente.

ANTECEDENTES

El presente capítulo comprende dos aspectos que destacan por su interés, primeramente describe las hipótesis de investigación: y posteriormente detalla los diversos criterios que se han utilizado para estudiar a la interacción genotipo-ambiente.

2.1 HIPOTESIS DE INVESTIGACION

Para concluir acerca del objetivo mencionado anteriormente, fué necesario plantear las siguientes hipótesis de investigación:

- Un número reducido de ambientes es suficiente para estudiar las características de adaptación de las variedades, en la zona de estudio.
- Comparar estadísticamente los rendimientos medios del testigo regional con las variedades en prueba, es insuficiente para la selección de las mejores variedades.

2.2 RECONOCIMIENTO DE LA INTERACCION GENOTIPO-AMBIENTE.

Márquez (1974), describe el fenómeno de interacción genotipo ambiente, como el comportamiento relativo diferencial que exhiben los genotipos, cuando se les somete a diferentes medios am bientes y que, particularmente en la agricultura de México, dada la gran diversidad de condiciones ecológicas con que cuenta el país, es de suma importancia aplicar los criterios de "estabilidad" y "de seabilidad" para las variedades que estén en proceso de mejoramiento.

Allard y Bradshaw (1964), dividen las variaciones del ambiente en predecibles e impredecibles; son predecibles todas aquellas características permanentes del medio ambiente, e impredecibles todas las fluctuaciones función del tiempo. Denominan a una variedad como "buena amortiguadora. o con "buena flexibilidad", cuando puede ajustar su condición genotípica y fenotípica en respuesta a condición nes transitorias del medio ambiente. Distinguen dos tipos de flexibilidad; 1) "flexibilidad individual", cuando cada individuo de una población tiene una buena adaptación al rango de ambientes y 2) "flexibilidad poblacional", que surge de diferentes genotipos coexistiendo, cada uno de ellos, adaptado a determinados rangos de distintos ambientes.

Rowe y Andrew (1964), encontraron diferencia en estabilidad en tre grupos genotípicos de maíz (Zea mays, L.), teniendo los heterocigotes a un comportamiento elevado, bajo condiciones favorables, pero desproporcionalmente reducido bajo condiciones desfavorables.

Martinez (1977), al evaluar un grupo de variedades de trigo (Triticum aestivum, L.), en diferentes ambientes, observó que el rendimiento de grano de las variedades, muestra una tendencia definida a incrementarse proporcionalmente el mejorar el ambiente.

Bucio (1966), trabajando con líneas homocigóticas de Nicotia na rústica, y generaciones segregantes, denominó como mejor genotipo al que muestra las siguientes características: el más alto comportamiento sobre ambientes, y la más alta estabilidad de comportamiento, lo cual concuerda con Finlay y Wilkinson (1963), que definen como variedad "ideal", aquella que tiene adaptabilidad general, o sea, alto rendimiento en todos los medios ambientes.

2.3 MEDIDAS DE LA INTERACCION GENOTIPO-AMBIENTE

Plaisted y Peterson (1959), presentaron un método para analizar el comportamiento de la estabilidad del rendimiento, cuando di versas variedades son probadas en un número de localidades dentro de un año. En términos generales, el procedimiento consiste en hacer análisis de varianza combinados; consideran como variedad estable, aquella que contribuye con un valor medio, pequeño a la interacción variedad x localidad.

Miller et al (1962), al evaluar variedades de algodón (Gossy-pium, spp.), en 11 localidades por un período de tres años, señalan que para hacer recomendaciones de variedades es esencial que éstas sean evaluadas sobre una adecuada muestra de ambientes. Una muestra razonable podría ser la siguiente: una serie de localidades en un año, una serie de años en una localidad, o cualquier combinación de años y localidades incluyendo un número de pruebas moderado.

Concluyen que la utilización de tales métodos de prueba, dependerá del rango de ambientes encontrados, sobre una serie de 10calidades o años.

Gómez (1977), al seleccionar variedades de sorgo (Sorghum vul gare, L.), que mostraran un alto grado de estabilidad en comportamiento, encontró que hacer una clasificación por efectos fenótipicos, equivale a clasificar por efectos ambientales directos. En és ta clasificación identificó cuatro condiciones ambientales diferen tes, las que define como: muy favorables, favorables, desfavorables y muy desfavorables.

Juárez (1977), estudió la forma de manejar la eficiencia en la selección de variedades de sorgo (Sorghum vulgare, L.), para su recomendación a nivel comercial, concluyó que la comparación estadística del rendimiento medio del testigo vs. el de las variedades, como único criterio, no es suficiente para explicar las reacciones varietales al medio ambiente.

2.4 ESTIMACION DE PARAMETROS DE ESTABILIDAD

Finlay y Wilkinson (1963), estudiaron la adaptación de 277 variedades de cebada (Hordeum vulgare, L.), para ello utilizaron los rendimientos de grano de diferentes localidades del Sur de Australia. Ellos hicieron la regresión lineal del rendimiento individual de cada variedad, sobre el rendimiento medio de todas las va-

riedades en cada localidad. Mencionan que son índices importantes en el análisis de adaptación, el coeficiente de regresión (β_1) , y los rendimientos medios de las variedades, en todos los ambientes.

Concluyen que coeficientes de regresión estimados cercanos a 1, indican estabilidad promedio. Un rendimiento medio elevado con coeficiente de regresión aproximado a 1, indican que la variedad tiene adaptabilidad general. Este coeficiente asociado a bajos rendimientos, indica adaptación a ambientes específicamente pobres o desfavorables; sucede lo contrario cuando se asocia a rendimientos elevados, en donde habrá ambientes favorables.

Los coeficientes de regresión mayores de 1 detectan variedades altamente sensibles y específicas para ambientes favorables. Cuando los coeficientes de regresión son menores a 1, hay mayor resistencia a cambios ambientales.

Eberhart y Russell (1966), propusieron un modelo estadístico, que incluye aquellos factores asociados al ambiente, así como la interacción de éste con el genotipo. Definen como parámetros de estabilidad: el coeficiente de regresión (β_i), y la desviación de regresión (S^2 di), para cada variedad.

Carballo (1970), al comparar variedades de maíz (Zea mays,L.), concluyó según sus resultados, que el modelo anterior, fue efectivo para conocer la respuesta de las variedades a los cambios ambientales, e identificó variedades deseables por su estabilidad y rendimiento elevado. Considera que el concepto de variedad deseable, debe definirlo el fitomejorador en función de las caracterís ticas de los medios ambientales de su región.

Además clasificó por categorías a las variedades, según las situaciones posibles que presentan, en función de sus parámetros de estabilidad. Estas categorías aparecen el el Cuadro 1.

CUADRO 1. DESCRIPCION DE LOS VALQRES QUE PRESENTAN LOS PARAME-TROS DE ESTABILIDAD, SEGUN CARBALLO (1970).

	•		r
Categoría	Coeficiente de regresión	Desviaciones de regresión	Descripción
A	β ₁ = 1	$s^2 di = 0$	Variedad estable
B	β ₁ = 1	s ² di > 0	Buena respuesta en to- dos los ambientes, in- consistente
C	β _i < 1	$s^2 di = 0$	Responde mejor en am- bientes desfavorables, consistente.
D	β ₁ < 1	s ² di > 0	Responde mejor en am- bientes desfavorables, inconsistente.
E	β ₁ > 1	$s^2 di = 0$	Responde mejor en bue- nos ambientes, consis- tente.
F ·	β _i > 1	s ² di > 0	Responde mejor en bue- nos ambientes, inconsi <u>s</u> tente.

2.5 APLICACION DE LOS PARAMETROS DE ESTABILIDAD EN DIFERENTES CULTIVOS.

Carballo y Marquez (1970), al probar variedades mejoradas e hibridos de maíz (zea mays, L.), de El Bajío y La Mesa Central en diversas condiciones ambientales, concluyen con sus resultados: el metodo propuesto por Eberhart y Russell (1966), fue efectivo en la discriminación de variedades y que el conocimiento de las interac-

ciones variedad x localidad, variedad x años y la importancia de cada una dentro del programa de mejoramiento, orienta mejor respecto a la conveniencia de una estratificación de la región, en subregiones

Castellón (1976), trabajando con maíces cristalinos, encontró que utilizando el modelo desarrollado por Eberhart y Russell (1966), es posible predecir tendencias de respuesta, orientando hacia los ambientes más eficaces para realizar selección, además resultó más efectivo para recomendar variedades, que el sólo uso de la media varietal, y auxilia en la decisión de determinados sistemas de selección.

Márquez (1973), al describir la interacción genotipo-ambiente en términos de parámetros de estabilidad, define como variedad estable, aquella que responde exactamente a los cambios ambientales, sin interaccionar con los ambientes, ya que el índice ambiental (I_j), es función de las demás variedades utilizadas en los en sayos.

Moll y Stuber (1974), mencionan que de acuerdo a la importancia de las interacciones ambientales, su significancia para el $f\underline{i}$ tomejorador depende de los objetivos; si se desean variedades que se comporten bien sobre un amplio rango de medios ambientes, entonces el programa es favorecido por pequeñas interacciones. Si por el contrario, se desean variedades bien adaptadas a medios ambientes muy específicos, entonces el programa es beneficiado por interacciones grandes.

Chávez (1977), investigó el carácter estabilidad del rendimien to de 23 líneas y variedades de avena (Avena sativa, L.), en siete localidades diferentes de la República Mexicana. Encontró que sólo el 66 % de los materiales, mostraron sensibilidad de respuesta a los cambios ambientales, sin embargo, sólo una línea experimental se ajustó al concepto de estabilidad absoluta, con respecto a los dos parametros β_1 = 1 y S²di = 0. En sus conclusiones señala, que el criterio de selección de los materiales estudiados, no incluyó el carácter estabilidad, por lo que fue efectiva únicamente para e levar los rendimientos medios; haciendo la indicación de que si se busca estabilidad, es necesario incluir la estimación de las desvia ciones de regresión, para evaluar la consistencia de las variedades.

Mazzani (1963), enfatiza que los adelantos obtenidos hasta el presente, por medio de los trabajos fitotécnicos de mejoramiento del cacahuate (Arachis hypogaea, L.), en los diversos países del mun do han sido modestos, mencionando el hecho de que en algunas regiones de Estados Unidos, después de 30 años de trabajo, los rendimien tos medios por unidad de superficie son todavía los mismos que al principio. Comentando además, la inestabilidad de las líneas puras de cacahuate debido a su naturaleza tetraploide, lo que origina irregularidades en el comportamiento de los cromosomas.

Gillier y Silvestre (1970), encuentran que el estudio de la asociación con mezclas de genotipos diferentes de cacahuate, (Arachis
hypogaea, L.), es muy complicado, y los resultados aún no son conclu
yentes, ya que se trata de una especie muy plástica y el área de

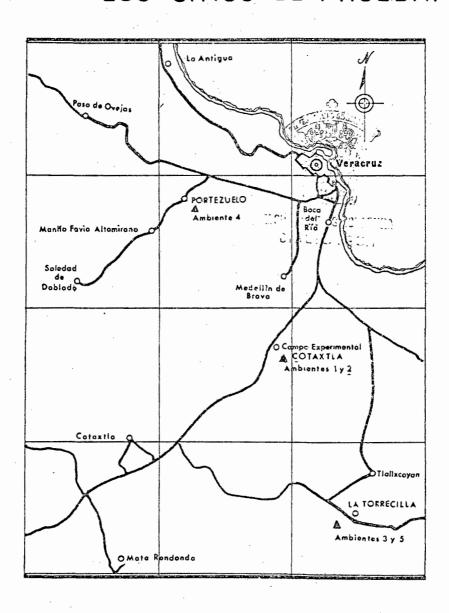
adaptación de una línea puede ser muy amplio. Afirma que para realizar selecciones útiles, es necesario disponer de líneas puras muy distintas en su origen y hacerlas exteriorizar su comportamiento por experimentación, en diferentes medios ecológicos.

Creen además, que para alcanzar un progreso contínuo en materia de productividad, es necesaria la creación de variedades adaptadas a las técnicas agronómicas intensivas.

3. MATERIALES Y METODOS

Este trabajo comprende el análisis de datos de cinco experimentos realizados en tres localidades; desde julio de 1975, hasta febrero de 1977, conducidos por el INIA, a tráves de su Programa de Investigación en Oleaginosas.

3.1. UBICACION Y CARACTERIZACION DE LAS LOCALIDADES DE PRUEBA


Las localidades de prueba que se utilizaron en el presente es tudio, son presentadas en la Figura 1, y sus características clima tológicas en el Cuadro 2., el cual se formó con la información publicada por García (1973). En él, se aprecian las diferentes condiciones, a que fueron sometidas las 22 variedades de cacahuate.

3.2 VARIEDADES

Para clasificar a cada una de las variedades experimentales, según los valores de sus parámetros de estabilidad, se involucró material experimental muy distinto tanto en su genealogía, como en el tipo de variedad. La relación de todos los materiales que intervinieron se presentan en el Cuadro 3.

Los rangos de variación de las características agronómicas de

FIG.1. LOCALIZACION GEOGRAFICA DE LOS SITIOS DE PRUEBA.

CUADRO 2. SITIOS DE PRUEBA, CON SUS CARACTERISTICAS CLIMATOLOGICAS SEGUN GARCIA (1973).

		E	F	M	Α .	M	J	J	A	S	0	N	. D	
CAMPO COTAXTLA														
18°50' N														
96°19' W(6)	Pmm	12.5	19.2	3.9	19	56.3	263.6	422.6	175.2	233.6	116.5	22.1	21.6	1366.1
10-16 m.S.N.M.														
Λw" (w) (e) g	т°С	21.9	23.1	24.9	27.7	29.1	28.1	26.9	27.7	27.1	26.2	24.1	22.2	25.8
PORTEZUELO MPIO														
DE MANLIO F. AL														
TAMIRANO	•	•												
19° 5' N (14) 96°19' W (14)	₽mm	85	18.8	12.4	14	45.7	250.4	255.3	167.9	204.8	102.7	20.4	15.6	1116.5
96°19' W (14)														
45 m. S.N.M.														
Aw" (w) (e) g	π°ċ	23.2	24.1	26.6	28.4	30.3	30	28.3	28.6	27.7	26.7	25.1	23.4	26.9
TORRECILLA MPIO														
DE TLALIXCOYAN														
18°48' N	Dmm	21.4	19 1	8.7	11 7	67.3	161.7	354	247 5	299.9	202.7	52.6	36.7	1483.3
96° 3' W(10)	· Fittis	21.4	17.1	0.7	,	0,.5	, , , ,	334	247.5	233.3	20217	32.0	30.7	110313
84 m. S.N.M.														
Aw" (w) (e) g	т°С	22.5	24.1	26.1	28.4	30	29.9	27.6	28.3	27.2	26.2	24.9	23.4	26.6

En donde:

- : Precipitaciones medias mensuales y total anual
- : Temperaturas medias mensuales y anual
- : Temperatura media anual amyor de 22°C y la del mes más frío mayor de 18°C
- : El más seco de los cálidos subhúmedos con lluvias en verano, con un cociente P/T menor de 43.2. Las comillas indican época seca, además de una marcada en el invierno, una corta en el verano.
- : Intermedio en cuanto a grado de humedad entre el Aw y el Aw, con lluvias en verano, cociente P/T
- entre 43.2 y 55.3. : El más húmedo de los cálidos subhúmedos con lluvias en verano, cociente P/T mayor que 55.3
- (w) : Un porcentaje de lluvia invernal menor que 5 % del total anual.
- (e) : Extremoso, oscilación entre 7 y 14°C.
- : El mes más caliente antes de junio
- () : Los números dentro del paréntesis indican los años considerados para determinar la temperatura y precipitación media anual.

las variedades, observadas en las condiciones ambientales en que fueron probadas, se muestran en el Cuadro 4.

3.3 DESCRIPCION DE LOS EXPERIMENTOS

Pruebas de germinación. - Se efectuaron colocando 50 semillas de cada variedad, en cajones rellenos con arena, haciendo los conteos de plántulas después de cinco a seis días. Se llevaron a porcentaje, y en todas las variedades este fluctuó entre 94 a 98 %, por lo que se consideró que no había diferencia entre ellas.

<u>Preparación de la semilla.</u>— Se seleccionaron las semillas mejor formadas de las distintas variedades, impregnándolas posterio<u>r</u> mente con Graneril 21 (Lindano 2 %), para protegerlas de las plagas del suelo, y se colocaron en bolsas Glacine de 19.5 x 8 cm para su distribución adecuada dentro de la parcela experimental.

Preparación del terreno. - Se inició la preparación del terreno con un barbecho de 25 a 30 cm de profundidad seguido de dos pasos de rastra, el segundo perpendicular al primero.

En algunos casos después del rastreo se niveló y finalmente se surcó.

En las siembras de invierno se regó antes de surcar para asequrar la nacencia.

CUADRO 3. RELACION DE MATERIALES ESTUDIADOS, MOSTRANDO EL TIPO DE VARIEDAD, LUGAR EN DONDE FUE COLECTADO Y EL AÑO - DE COLECCION.

Var	riedad 6 Pedigree	Tipo 6 Grupo		Año de- colecci ó n
1	Blanco Criollo Aguas calientes	Virginia	Nacional	1967
2	Delicias- 1		Delicias, Chih.	1970
3	Georgia 119-20	11	U.S.A.	1962
4	Guerrero- 1	v ·	Iguala, Gro.	1962
5	Guerrero- 4	U	Nacional	1962
6	Ixtaltepec- 1	ų .	Juchitan, Oax.	1972
7	Jumbo- 2	n	U.S.A.	1962
8	Los Médanos	H	Nacional	1964
9.	Morelos- 3	, и	Nacional	1964
10	N-C-4-X	n	U.S.A.	1962
11	R-F-123	n .	Brasil	1963
12	R-F-132	u	Brasil	1963
13	R-F-211-N-C-2	11	Brasil	1963
14	R-F-214	II.	Brasil	1963
15	Rojo Regional	11	Uxmal, Yuc.	1972
16	Ver-2-Cd. Guzman	۳.	Nacional	1967
17	Improved Spanish	Español Valencia	U.S.A.	1962
18	Manfredi- 108	11	Argentina	1967
19	Morelos- 1	11	Nacional	1962
20	Tautui- 76	. 11	Brasil	1963
21	Tennesse Red	ņ	U.S.A.	1962
22	Tuxpan- 2	n	Nacional	1967

CUADRO 4. RANGO DE VARIACION DE LAS CARACTERISTICAS AGRONOMICAS DE LAS 22 VARIEDADES UTILIZADAS

	VARIEDADES	Días a fl <u>o</u> ración	Días a cosecha	Altura f <u>i</u> nal cm.	Número de semillas- por vaina	Color de cuticula de la se milla.	Peso de 100 semillas (gr).
1	Blanco Criollo Aguas					III I I I I	
_	calientes	32-34	120-132	37-68	2	Salmón	. 87
2	Delicias- 1	32-42	120-132	40~65	2	11	94
3	Georgia 119-20	32-42	120-132	40-66	2	**	85
4	Guerrero- 1	32-42	120-132	43-74	2	**	82
5	Guerrero- 4	32-42	120-132	46-65	2	, ,	70
6	Ixtaltepec- 1	32-42	120-132	34-61	2	11	94
7	Jumbo- 2	32-42	120-132	44-72	2	11	103
8	Los Médanos	32-42	120-132	43-70	2 .	n .	99
9	Morelos- 3	32-42	120-132	43-72	2	н	76
10	N-C-4-X	32-42	120-132	43-70	2	11	92
11	R-F-123	32-42	120-132	39-70	2	R	71
12	R-F-132	29-42	120-132	35-61	2	н	92
13	R-F-211-N-C-2	33-49	120-132	43-71	2	11	90
14	R-F-214	32-42	120-132	36-58	2	fi	81
15	Rojo Regional	26-42	100-121	39-71	3y4	Rojo	49
16	Ver2-Cd. Guzmán	32-42	117-132	43-71	. 2	Salmon	89
17	Improved Spanish	26-41	117-132	39-72	2	11	60
18	Manfredi- 108	32-42	120-132	46-69	2	ti .	89
19	Morelos- 1	32-42	120-132	46-63	2 ·	"	82
20	Tautui- 76	26-42	117-132	43-69	2	11	68
21	Tennesse Red	32-42	120-132	36-62	2	11	99
22	Tuxpan- 2	26-41	117-132	41-64	2	41	69

Método de siembra. De acuerdo a la variedad que estaba en ca da bolsa, éstas se fueron colocando en el terreno, para proceder a la siembra, haciéndo ésta a mano y en el lomo del surco, en donde cada 25 cm se depositaron dos semillas, a una profundidad de 5 cm.

Fechas de siembra. - Las fechas en que se sembraron los experimentos en cada una de las localidades aparecen en el Cuadro 5.

Toma de datos. - Por considerarse de importancia agronómica para el programa de investigación, además del rendimiento en kg/parcela útil, se tomaron los siguientes datos:

- a) Días a germinación
- b) Días a floración
- c) Días a cosecha
- d) Altura final
- e) Tamaño de semilla
- f) Color de semilla
- g) Número de semillas por vaina

3.4 DISEÑO EXPERIMENTAL

El diseño experimental usado en cada sitio, fué de bloques al azar con 22 tratamientos (variedades), y cuatro repeticiones. Se utilizó como testigo regional, a la variedad Ixtaltepec- 1; siguiendo las recomendaciones del INIA para la siembra del cultivo del cacahuate, en el área de influencia del Campo Agrícola Experimental

Cotaxtla (1977), comprendiendo las siguientes especificaciones:

- a) Distancia entre surcos: 92 cm
- b) Distancia entre plantas: 25 cm
- c) Longitud de surcos: 6 m
- d) Parcela experimental: 4 surcos
- e) Superficie de parcela total: 22.08 m²
- f) Parcela útil: 2 surcos centrales quitando 0.50 m en cada extremo de los surcos
- g) Superficie parcela útil: 9.20 m²
- h) Fertilización: 40-40-0 aplicado 10 días después de la nacencia. Usando como fuentes: Sulfato de amonio 20.5 % de N, y Superfosfato de calcio simple 19.5 % de $\rm P_2O_5$.

3.5 AMBIENTES DE PRUEBA

Cada ciclo de siembra en cualquier localidad y en cualquier año considerado, constituye un ambiente. La descripción de cada uno de ellos se muestra en el Cuadro 5.

CUADRO 5. DESCRIPCION DE LOS AMBIENTES DE PRUEBA DE LAS 22 VARIE-DADES DE CACAHUATE.

No.	Ambiente .	Ciclo	Recurso agua	Fecha de siembra
1	CAE Cotaxtla	Verano	Temporal	Jul/23/75
2	CAE Cotaxtla	Invierno-Primavera	Riego	Ene/20/76
3	La Torrecilla, Ver.	Verano	Temporal	Jun/24/76
4	Portezuelo, Ver.	Verano	Temporal	Jul/ 8/76
5 -	La Torrecilla, Ver.	Invierno-Primavera	Riego	Feb/21/77

3.6 ANALISTS ESTADISTICOS

Primeramente se analizaron los rendimientos, de cada uno de los experimentos en forma individual, para examinar las diferencias entre variedades en cada uno de los ambientés de prueba. Cuando se detectaron diferencias estadísticas significativas entre variedades, se utilizó la prueba de rango múltiple de Duncan, descrita por Steel y Torrie (1960).

Posteriormente en forma conjunta, se obtuvo el análisis de varianza propuesto por Eberhart y Russell (1966), el cual se presenta en el Cuadro 6, usando el siguiente modelo:

$$Y_{ij} = \mu_i + \beta_i I_j + \delta_{ij}$$

donde:

 Y_{ij} = media varietal de la i-ésima variedad en el j-ésimo ambiente (i = 1,2,...v; j = 2,...n).

μ = media de la i-ésima variedad, sobre todos los ambientes

β_i = coeficiente de regresión que mide la respues ta de la i-ésima variedad en ambientes varia bles.

δ = desviación de regresión de la i-ésima variedad en el j-ésimo ambiente.

I = indice ambiental obtenido como la media de todas las variedades en el j-ésimo ambiente, menos la media general. De manera que:

$$I_{ij} = (i Y_{ij}/v) - i j Y_{ij}/vn$$

Los parámetros de estabilidad, se estiman:

1. Coeficiente de regresión

$$\beta_{i} = \frac{\Sigma}{j} Y_{ij} I_{j} / \frac{\Sigma}{j} I_{j}^{2}$$

2. Desviación de regresión

$$s^2 di = \left| \begin{array}{c} \Sigma & \hat{\delta}^2 \\ j & \hat{\delta}^2 \end{array} \right| / n - 2 \left| - S_e^2 / r \right|$$

 $s_{\rm e}^2$ /r es el cuadrado medio del error conjunto

CUADRO - ANALISIS DE VARIANZA, EBERHART Y RUSSELL (1966)

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE CUADROS	CUADRADO MEDIO
Variedad (V)	v-1	$\frac{1}{n} \stackrel{\Sigma}{i} Y_{i}^{2} - F.C.$	CM ₁
Medios Ambientes (E)	n-1		
E x V	v-1) (n-1)	$\sum_{ij}^{\Sigma\Sigma} Y^{2}_{ij} - \Sigma Y^{2}_{i} / n$	
Medios Ambientes		1 5 2 4 5 2	
(lineal)	.1	$\frac{1}{v} {\binom{\Sigma}{j}} \cdot {\mathbf{Y}} \cdot {\mathbf{j}}^2 / {\frac{\Sigma}{j}} \cdot {\mathbf{I}}_{\mathbf{j}}^2$	
V x E (Lineal)	v-1	$\sum_{i=1}^{\Sigma} \left(\sum_{j=1}^{\Sigma} Y_{ij} I_{j}^{2} / \sum_{j=1}^{\Sigma} I_{j}^{2}\right] - \left[S.C. \text{ Meds. ambs.}\right]$	CM ₂
Desviación Conjunta	v(n-2)	ΣΣ δ2 ij ^δ ij	CM ₃
Variedad 1	n-2	$\begin{bmatrix} \Sigma & Y_{ij}^2 - (\underline{Y}_{1})^2 \end{bmatrix} - (\Sigma & Y_{1j} & I_j)^2 / \Sigma & I_j^2$	
· Variedad v	n-2	$\begin{bmatrix} \sum_{j}^{\Sigma} y^{2} & (\underline{y} & \underline{v})^{2} \\ j & y \end{bmatrix} - (\sum_{j}^{\Sigma} y_{j} & j)^{2} / \sum_{j}^{\Sigma} z^{2}$	
Error Conjunto	n(r-1) (v-1)		CM ₄
Total	nv-1	$\sum_{ij}^{\Sigma\Sigma} Y_{ij}^2 - F.C.$	

4. RESULTADOS Y DISCUSION

Los resultados y su discusión correspondiente, que se tratarán en éste capítulo, se refieren a las mismas 22 variedades mejoradas, enunciadas anteriormente.

4.1 ANALISIS INDIVIDUALES

Ambiente 1. El análisis de varianza de los resultados obtenidos en el primer experimento, se presenta a continuación:

CUADRO 7. ANALISIS DE VARIANZA DEL EXPERIMENTO CONDUCIDO EN EL CAE COTAXTLA, DURANTE EL CICLO DEL VERANO DE 1975.

Factor de	GL	sc	СМ	F _C	F	t
variación					0.05	0.01
Entre variedades	21	7.31265	0.34822	3.17364*	1.75	2.20
Entre repeticiones	. 3	0.43073	0.14357	1.30853	2.76	4.13
Error	63	6.91255	0.10972			
Total	87	14.65593				

El análisis estadístico detectó diferencia altamente significativa entre variedades. El coeficiente de variación fué de 17.55 %, y las diferencias mínimas significativas (DMS), al 5 y 1 % fueron de 468 y 623 kg/ha respectivamente.

En el Cuadro 8, se observa que un grupo de 13 variedades estadísticamente iguales entre ellas, fueron superiores en rendimiento a la variedad testigo (Ixtaltepec- 1); sin embargo, sólo ocho la su peraron significativamente.

CUADRO 8. RENDIMIENTO MEDIO, SIGNIFICANCIA ESTADISTICA Y CARACTERISTICAS AGRONOMICAS DE 22 VARIEDO DADES MEJORADAS DE CACAHUATE, EN EL AMBIENTE 1.

No.de orden	VARIEDADES	Rendimiento Kg/ha	Días a germi- nación	Días a flora- ción	Días a cose cha	Altura final	Tamaño de sem <u>i</u> lla	Color de cuticula de la se milla	Semilla x vaina
1	Tautui- 76	2389 a	6	31	122	47	Chico	Salmón	?
2	Improved Spanish	2275 a	6	32	122	49	Chico	11	n
3	R-F-123	2219 abc	6	34	122	45	Chico	"	11
4	R-F-132	2207 abc	6	35	122	40	Grande	10	**
5 .	R-F-211-N-C-2	2151 abc	6	38	122	49.	Grande	. (1	**
6	Tuxpan- 2	2151 abcd	6	3.0	122	47	Chico	11	11
7	R-F-214	2139 abcd	6	35	122	52	Medio	10	11
8	Los Médanos	2049 abcd	6	40	122	45	Grande	f 4	#1
9	Guerrero- 4	1947 abcde	6	33	122	47	Grande	11	Ħ
10	N-C-4-X	1924 abcde	6	33	122	49	Medio	11	11
11	Jumbo- 2	1913 abcde	6	40	122	46	Medio	t#	11
12	Manfredi- 108	1868 abcde	. 6	37	122	51	Grande	11	н
13	Guerrero- 1	1845 abcde	6	39	122	49	Grande	"	н
14	Delicias- 1	1800 bcde	6	37	122	45	Grande	17 .	11
15	Georgia 119-20	1788 bcde	6	37	122	46	Grande	fit.	19
16	Rojo Regional	1766 cde	6	26	110	56	Chico	Rojo	364
17	Morelos- 1	1698 cde	6	3.6	122	48	Grande	Salmon	11
18	Ver2-Cd. Guzmán	1596 de	6	39	122	51	Grande	"	
19	Morelos- 3	1596 e	6	38	122	49	Grande	n	11
20	Blanco Criollo Aguasca	1370	•						
20	lientes	1449 e	6	34	122	47	Grande	u u	"
21	Ixtaltepec- 1	1449 e	6	34	122	44	Grande	11	17
22	Tennesse Red	1290 e	6	37	122	45	Grande	"	II II

⁽¹⁾ Los tratamientos con la misma letra, no son significativos al 5 %, según la prueba de rango múltiple de Duncan.

Dentro de éste grupo, destacan Tautui- 76 é Improyed Spanish, que pertenecen al tipo Español.

La variedad más precoz de las ensayadas, fue Rojo Regional con 26 días a floración y 110 a cosecha; en el resto, hubo diferencias en cuanto a floración, sin embargo no se reflejaron en la fecha de maduración, ya que se cosecharon a los 122 días.

<u>Ambiente 2.</u> El análisis de varianza de los resultados obtenidos en éste segundo experimento, es presentado a continuación:

CUADRO 9. ANALISIS DE VARIANZA DEL EXPERIMENTO CONDUCIDO EN EL CAE COTAXTLA, DURANTE EL CICLO INVIERNO-PRIMAVERA DE 1976.

Factor de	GL	sc	СМ	F	F,	E
variación				С	F _t 0.05 0.01 1.75 2.20 2.76 4.13	
Entre variedades	21	12.4468	0.5927	3.2109*	1.75	2.20
Entre repeticiones	3	1.6595	0.5532	2.9967	2.76	4.13
Error	63	11.6295	0.1846			
Total	87	25.7358		,		

Se observa que hubo diferencia altamente significativa entre variedades. El coeficiente de variación fué de 20.27 %, y las DMS de 607 kg/ha al 5 %, y de 808 kg/ha al 1 %.

En el Cuadro 10, se observa que hubo un grupo de cuatro varieda des, estadísticamente iguales entre ellas, que fueron superiores en rendimiento, a la variedad testigo (Ixtaltepec- 1).

Dentro de este grupo se encuentran las variedades Tautui- 76, Tuxpan- 2, é Improved Spanish, que son del tipo Español; además está incluida la variedad R-F-123, perteneciente al grupo Virginia.

El resto de las variedades resultaron estadísticamente iguales tanto entre ellas, como en el testigo regional.

CUADRO 10. RENDIMIENTO MEDIO, SIGNIFICANCIA ESTADISTICA Y CARACTERISTICAS AGRONOMICAS DE 22 VARIEDADES MEJORADAS DE CACAHUATE, EN EL AMBIENTE 2.

No.de orden	VARIEDADES	Rendimient Kg/ha	o Días a germi-	Dias a flora-	Días a cose	Altura final	Tamaño semi	Color de cutícula	Semillas x
			nación	ción	cha		lla	de la se milla	vaina
1	Tautui- 76	3097 a	10	41	132	43	Chico	Salmón	2
2	Tuxpan- 2	2778 ab	10	41	132	41	Chico	#1	· u
3	R-F-123	2737 abc	10	41	132	39	Chico	11	•
4	Improved Spanish	2710 abcd	10	41	132	39	Chico		*1
5	Rojo Regional	2255 bcde	10	41	121	39	Chico	Rojo	354
6	R-F-211-N-C-2	2241 bcde	10	41	132	43	Grande	Salmón	2
7	Los Médanos	2153 bcde	10	41.	132	43	Grande	"	"
8	Ver2-Cd. Guzmán	2112 bcde	10	41	132	43 .	Grande	**	ri
9	R-F-214	2078 bcde	10	41	132	36	Medio	11 .	11
10	Guerrero- 4	2038 cde	10	41	132	46	Grande	11	i,
1.1	Guerrero- 1	2038 cde	1.0	41	132	43	Grande	"	" /
12	N-C-4-X	2038 cde	10	41	132	43	Medio	**	"
13	Delicias- 1	2004 de	. 10	41	132	40	Grande	**	15
14	Jumbo- 2	1997 de	10	41	132	44	Medic.	"	"
15	Tennesse Red	1915 e	10	41	132	. 36	Grande	. 11	11
16	Ixtaltepec- 1	1902 e	1.0	41	132	34	Grande	· II	11
17	R-F-132	1814 e	10	41	132	35	Grande	48	u
18	Georgia 119-20	1787 e	10	41	132	40	Grande	11	tt
1.9	Manfredi- 108	1752 e	10	41	132	46	Grande	11	**
20	Blanco Criollo Aguas								
	calientes	1732 e	10	41	132	. 37	Grande	"	ft.
21	Morelos- 3	1732 e	10	41	1.32	43	Grande	ur .	Ħ
22	Morelos- 1	1.698 e	10	41	132	46	Grande	19	"

⁽¹⁾ Los tratamientos con la misma letra, no son significativos al 5 %, según la prueba de rango múltiple de Duncan.

Las variedades mostraron uniformidad en los días a floración y cosecha, con excepción de Rojo Regional que maduró a los 121 días.

La variedad que produjo el más bajo rendimiento fue Morelos- 1 con 1698 kg/ha.

Se observó un retraso de todas las variedades en su germinación, así como una prolongación en la duración de su ciclo vegetativo, a consecuencia de las bajas temperaturas que se presentaron.

Ambiente 3. El análisis de varianza de los resultados obtenidos en el tercer experimento, se presenta a continuación:

CUADRO 11. ANALISIS DE VARIANZA DEL EXPERIMENTO CONDUCIDO EN LA TORRECILLA, VER., DURANTE EL CICLO DEL VERANO DE 1976.

Factor de	GL SC		СМ	Fc	Ft	
variación				c	0.05	0.01
Entre variedades	21	9.0276	0.4299	1.2370	1.75	2.20
Entre repeticiones	3	2.9834	0.9945	2.8615*	2.76	4.13
Error	63	21.8945	0.3475			
Total	87	33.9055	,			

El análisis estadístico no detectó diferencia significativa en tre variedades; sin embargo, en el Cuadro 12, se observa que la variedad Morelos- 1, supera considerablemente al testigo regional ($I\underline{x}$ taltepec- 1). El coeficiente de variación fué de 26.23 %.

Se observaron diferencias en días a floración y a cosecha, habiendose comportado más precoces algunas variedades del tipo Español, destacando entre ellas Rojo Regional con 27 días a floración y 112 días a cosecha.

Las variedades mostraron uniformidad en el carácter altura de planta, con excepción de R-F-132 del grupo Virginia, que fue la de menor tamaño.

CUADRO 12. RENDIMIENTO MEDIO Y CARACTERISTICAS AGRONOMICAS DE 22 VARIEDADES MEJORADAS DE CACAHUATE, EN EL AMBIENTE 3.

No.de orden	VARIEDADES	Rendimiento Kg/ha	Días a germi- nación	Días a flora- ción	Días a cose cha	Altura final	Tamaño semi lla.	Color de cutícula de la se milla	Semi- llas- x vaina
1.	Morelos- 1	3043	7	32	126	60	Grande	Salmon	2
2	Ver2-Cd. Guzmán	2697	7	32	126	60	Grande	. 11	11
3	R-F-211-N-C-2	2520	7	32	126	57	Grande	11	**
4	Georgia 119-20	2479	7	32	126	56	Grande	87 .	11 .
5	R-F-132	2459	7.	32	126	44	Grande	11 '	t)
6	Blanco Criollo Aguas								,
	calientes	2425	7	32 ·	126	56	Grande	tr	11
7	Los Médanos	2411	Ż	32	126	57	Grande	н	α,
8	Morelos- 3	2411	7	32	126	57	Grande	ŧτ	11
9	Delicias- 1	2303	7	32	126	56	Grande	11	n
10	Guerrero- 1	2275	7	32	126	56	Grande	17	11
11	Jumbo- 2	2275	7	32	126	58	Medio	, п	
12	Guerrero- 4	2196	7	32	126	57	Grande	11	11
1.3	Tuxpan- 2	2146	7	28	117	61	Chico	ħ	17
14	Manfredi- 108	2139	7	32	126	53	Grande	и	. **
15	N-C-4-X	2136	ż	32	126	59	Medio	11	. 11
16	Ixtaltepec- 1	2092	7	32	126	51	Grande	13	. 11
17	Improved Spanish	2085	7	27	117	56	Chico	11	*1
1.8	R-F-123	1976	7	27	126	50	Chico	**	11
19	Tautui- 76	1.895	7	27	117	51	Chico	17	it -
20	R-F-214	1752	7	32	126	53	Medio	6\$	11
21	Tennesse Red	1711	7	32	126	54	Grande	11	11
22	Rojo Regional	1657	7	27	112	54	Chico	Rojo	364

Ambiente 4. El análisis de yarianza de los resultados que se obtuvieron en el cuarto experimento, se presenta a continuación:

CUADRO 13. ANALISIS DE VARIANZA DEL EXPERIMENTO CONDUCIDO EN POR-TEZUELO, VER., DURANTE EL CICLO DEL VERANO DE 1976.

Factor de	GL	sc	. CM	F_	Ft	
variación				. с	0.05	0.01
Entre variedades	21	28.8382	1.3732	2.6846*	1.75	2.20
Entre repeticiones	3	2.2860	0.7620	1.4896	2.76	4.13
Error	63	32.2268	0.5115			
Total	87	63.3510				

El análisis estadístico detectó diferencia altamente significativa entre variedades. El coeficiente de variación fué de 20.36 % y las DMS al 5 y 1 % fueron de 1,011 y 1,345 kg/ha respectivamente.

En el Cuadro 14, se puede observar, que habiéndose encontrado un grupo de 13 variedades que resultaron estadísticamente iguales entre ellas, sólo seis superaron en forma significativa a la variedad Tennesse Red, que registró la más baja producción.

Dentro de éste grupo, las mejores variedades fueron: R-F-123, R-F-214 y Tuxpan- 2 del tipo Español; y Guerrero- 4, R-F-132 é Ix-taltepec- 1, pertenecientes al grupo Virginia.

Aunque no en forma significativa, las diferencias en rendimiento de las dos primeras variedades, son notables con respecto a la producción del testigo regional (Ixtaltepec- 1).

Hubo algunas diferencias en floración, sin embargo no se reflejaron en días a cosecha ya que todos los materiales alcanzaron su madurez a los 123 días, a excepción de la variedad Rojo Regional que se cosechó a los 100 días.

CUADRO 14.RENDIMIENTO MEDIO, SIGNIFICANCIA ESTADISTICA Y CARACTERISTICAS AGRONOMICAS DE LAS 22 VARIEDA DES MEJORADAS DE CACAHUATE, EN EL AMBIENTE 4.

No. de	VARIEDADES	Rendimiento		Días a	Días a	Altura	Tamaño	Color de	Semillas
orden		Kg/ha	germi-	flora-	cose	final	semi	cuticula	X
			nación	ción	cha		lla .	de la se milla	va.ina
								IKITIA	
1	R-F-123	4770 a	5	29	123	70	Chico	Salmón	2 .
2	R-F-214	4680 ab	5	33	123	58	Chico	11	tt
3	Tuxpan- 2	4008 abc	5	26	123	64	Chico	4T	6 1
4	Guerrero- 4	3885 abc	5	33	123	65	Grande	"	#I
5	R-F-132	3750 abcd	5	29	123	61	Grande	n	Ħ
6	Ixtaltepec- 1	3722 abcd	5	33	123	61	Grande	# .	ŧı
7	Los Médanos	3702 abcde	5	33	123	70	Grande	n	H
8	Ver2-Cd. Guzmán	3702 abcde	5	33	123	71	Grande	n	11
9	Morelos- 3	3702 abcde	5	33	123	72	Grande	11	и,
10	Guerrero- 1	3682 abcde	5	33	123	74	Grande	11	"
11	Jumbo- 2	3600 abcde	5 5	33	123	72	Medio	11	"
12	N-C-4-X	35 87 abcde	5	33	123	70	Medio	"	. 11
13	Tautui- 76	3573 abcde	5	2'6	123	69	Chico		"
14	Improved Spanish	3464 bcde	5	26	123	72	Chico	n	11
15	Morelos- 1	3424 cde	5	33	123	63	Grande	ti.	11
16	Blanco Criollo Agua <u>s</u>								
	calientes	341 0 cde	5	33	123	68	Grande		, 11
17 .	R-F-211-N-C-2	3315 cde	5	33	123	71	Grande	11	41
.18	Rojo Regional	2948 cde	5	26	100	71	Chico	Rojo	364
19	Manfredi- 108	2819 cde	5	33	123	69	Grande	Salmom	2
20	Georgia 119-20	2601 de	5	33	123	66	Grande	!!	. #
21	Delicias- 1	2486 e	5	33	123	65	Grande	it	Ħ
22	Tennesse Red	2486 e	5	33	123	62	Grande	н	55

⁽¹⁾ Los tratamientos con la misma letra, no son significativos al 5 %, según la prueba de rango múltiple de Duncan.

Ambiente 5. El análisis de yarianza de los resultados que se obtuyieron en este quinto experimento, es presentado a continuación:

CUADRO 15. ANALISIS DE VARIANZA DEL EXPERIMENTO CONDUCIDO EN LA TORRECILLA, VER., DURANTE EL CICLO INVIERNO-PRIMAVERA DE 1977.

Factor de	GL	sc	CM	F_	F	t
variación				C	0.05	0.01
Entre variedades	21	16.1259	0.7679	2.7100	1.75	2.20
Entre repeticiones	3	1.2013	0.4004	1.4131	2.76	4.13
Error	63	17.8517	0.2834			
Total	87	35.1789				

El análisis estadístico detectó diferencia altamente significativa entre variedades. El coeficiente de variación fué de 12.57 % y las DMS al 5 y 1 % fueron de 752 y 1,001 kg/ha respectivamente.

En el Cuadro 16, se observa un grupo de 16 variedades que resultaron iguales entre ellas. Sin embargo, sólo cuatro superaron en forma significativa a los materiales que obtuvieron las producciones más bajas, incluyendo a la variedad testigo Ixtaltepec- 1.

Las mejores variedades fueron: Guerrero- 1, Guerrero- 4, N-C-4-X y Georgia 119-20, todas ellas pertenecientes al tipo Virginia. La variedad Improved Spanish fué la mejor del tipo Español.

Se observaron algunas diferencias en días a floración y altura de planta, que no se reflejaron en los días a cosecha, exceptuándo a Rojo Regional, que resultó ser más precoz, sin embargo, su producción fué la más baja.

Se observó un retraso en los días a germinación, debido a las bajas temperaturas que se presentaron después de la siembra.

Resumen de los cinco ambientes. En el Cuadro 17, se observa que en los cuatro ambientes que presentaron diferencias estadísticas significativas, resultaron sobresalientes las variedades Tautui- 76 y Tuxpan- 2 que son del grupo Español; y R-F-123 del grupo Virginia.

En tres de estos ambientes, destacaron Guerrero- 1, Guerrero- 4, N-C-4-X y Jumbo- 2 del grupo Virginia, é Improved Spanish del Español.

El testigo regional, en general siempre fue superado por éste grupo de variedades, a excepción del ambiente 4, en el cual no hubo significancia estadística.

En casi todos los casos las variedades del tipo Español tendi $\underline{\underline{e}}$ ron a florear más prematuramente, que las del tipo Virginia, y alg $\underline{\underline{u}}$ nas veces también se cosecharon antes.

En todos los experimentos conducidos, las variedades Tennesse Red y Rojo Regional, fueron inferiores en rendimiento a las variedades anteriormente mecionadas.

CUADRO 16. RENDIMIENTO MEDIO, SIGNIFICANCIA ESTADISTICA Y CARACTERISTICAS AGRONOMICAS DE 22 VARIEDA DES MEJORADAS DE CACAHUATE, EN EL AMBIENTE 5.

No.de orden	VARIEDADES	Rendimiento Kg/ha (1)	Días a germi- nación	Días a flora- ción	Días a cose cha	Altura final	Tamaño semi lla	Color de cutícula de la se milla	Semillas x vaina
1	Guerrero-1	4972 a	9	42	120	50	Grande	Salmón	2
2	Guerrero-4	4904 a	9	42	120	53	Grande	" .	"
3	N-C-4-X	4701 ab	9	42	120	48	Medio	**	
4	Georgia 119-20	4673 ab	9	42	120	49	Medio	**	"
5	Ver2-Cd. Guzman	4456 abc	9	42	120	55	Grande	**	"
6	Improved Spanish	4429 abc	9	36	120	37	Chico	. "	"
7	Tuxpan- 2	4402 abc	9	42	120	37	Chico	"	"
8	Blanco Criollo Aguasca								
	lientes	4402 abc	9 .	42	120	40	Grande	**	
9 .	Tautui- 76	4402 abc	9	42	120	46	Chico	"	"
10	Morelos- 3	4402 abc	9	42	120	44	Grande	**	**
11	Morelos- 1	4348 abc	9	42	120	46	Grande	. 11	"
12	Manfredi- 108	4212 abc	9	42	120	47	Grande	"	"
13	R-F-123	4157 abc	9 .	42	120	43	Chico	11	17
14	Jumbo- 2	4103 abc	9	42	120	51	Medio	"	15
15	R-F-211-N-C-2	4103 abc	9	42	120	44	Grande	"	. 11
16	Delicias- 1	4076 abc	9.	42	120	43	Grande	**	tt
17	R-F-214	3940 bc	9	42	120	37	Medio	•	"
18	Ixtaltepec- 1	3927 bc	9	42	120	40	Grande	"	11
19	Los Médanos	3912 bc	9	42	120	46	Grande	11,	"
20	R-F-132	3913 c	9	42	120	31	Grande	**	17
21	Tennesse Red	3750 c	9	42	120	34	Grande	11	"
22	Rojo Regional	2920	9	36	106	42	Chico	Rojo	364

⁽¹⁾ Los tratamientos con la misma letra, no son significativos al 5 %, según la prueba de rango múltip de Duncan.

CUADRO 17. VARIEDADES QUE OBTUVIERON DIFERENCIA ESTADISTICA SIGNIFICATIVA AL 5 %, CUANDO MENOS EN DOS AMBIENTES.

	VARIEDADES TIPO VIRGINIA		AMBIEN	TES	
	VARIEDADES IIIO VIRGINIA	1 .	2	4	5
1	R-F-123	2219	2737	4770	4157
2	Guerrero- 1	1845		3682	4972
3	Guerrero- 4	1947		3885	4904
4	Jumbo- 2	1913		3600	4103
5	N-C-4-X	1924		3587	470
6	R-F-132	2207	•	3750	
7	Los Médanos	2049		3702	
8	R-F-211-N-C-2	2151			4103
9	Ver2-Cd. Guzmán			3702	4456
.0	Morelos- 3			3702	4402
	VARIEDADES TIPO ESPAÑOL				
1	Tautui- 76	2389	3097	3573	4402
2	Tuxpan- 2	2151 _;	2778	4008	440
3	Improved Spanish	2275	2710		442
4	R-F-214	2139		4680	
5	Manfredi- 108	1868		4680	

4.2 ANALISIS CONJUNTO

De acuerdo a las observaciones de campo, se definieron previamente cuatro categorías arbitrarias para clasificar a los ambientes. Dicha clasificación coincide con la usada por Gómez (1977), y es mostrada a continuación:

CUADRO 18. CLASIFICACION DE LOS AMBIENTES DE PRUEBA, POR SUS RENDIMIENTOS MEDIOS.

	CATEGORIAS (ton/ha)	CLASIFICACION	AMBIENTE
	Rendimiento <2	Muy Desfavorable	1
2 <u><</u>	Rendimiento <3	Desfavorable	2 y 3
3≤	Rendimiento <4	Favorable	4
	Rendimiento > 4	Muy Favorable	5

Cabe aclarar que éstas categorías, serían aplicables a condiciones experimentales, de la zona central del Estado de Veracruz.

La agrupación de los rendimientos medios varietales, que se obtuvieron en los cinco ambientes de prueba, es presentada en el Cuadro 19. El amplio rango de variación observado en los índices ambientales (I_j), de 2,346 ton/ha (4.232-1.886), permitió estudiar a todas y cada una de las clases mencionadas anteriormente indicando que las 22 variedades fueron probadas en una adecuada muestra de condiciones ambientales en la que se encuentran involucradas: Localidades, años, ciclo de siembra, tipos de suelo, etc. La hipótesis que establece; Un número reducido de ambientes, es suficiente para evaluar a un grupo de variedades; puede considerarse verdadera para las condiciones de este estudio, concordando con las recomendaciones de Miller et al (1962), quienes también usaron en sus ensayos

CUADRO 19. RENDIMIENTOS MEDIOS VARIETALES AGRUPADOS POR AMBIENTES DE PRUEBA

1.886

-0.910

Indice Ambiental I,

			A M B	I E N T	E S		
V A	RIEDADES	Campo Cotaxtla	Campo Cotaxtla	Torrecilla	Portezuelo	Torrecilla	Media
		Temporal 1975	Riego 1976	Temporal 1976	Temporal 1976	Riego 1977	$\overline{\mathbf{x}}$
		(1)	(2)	(3)	(4)	(5)	
1	Blanco Criollo Aguas						
	calientes	1.449	1.732	2.425	3.410	4.402	2.684
2	Delicias- 1	1.800	2.004	2.303	2.486	4.076	2.534
3	Georgia 119-20	1.788	1.787	2.479	2.601	4.673	2.666
4	Guerrero- 1	1.845	2.038	2.275	3.682	4.972	2.962
5	Guerrero- 4	1.947 ·	2,038	2.196	3.885	4.904	2.994
6	Ixtaltepec- 1	1.449	1.902	2.092	3.722	3.927	2.618
7	Jumbo- 2	1.913	1.997	2.275	3.600	4.103	2.778
8	Los Médanos	2.049	2.153	2.411	3.702	3.913	2.846
9	Morelos- 3	1.596	1.732	2.411	3.702	4.402	2.769
10	N-C-4-X	1.924	2.038	2.136	3.587	4.701	2.877
11	R-F-123	2.219	2.737	1.976	4.770	4.157	3,172
12	R-F-132	2.207	1.814	2.459	3.750	3.913	2.829
13	R-F-211-N-C-2	2.151	2.241	2.520	3.315	4.103	2.866
14	R-F-214	2.139	2.078	1,752	4.680	3.940	2.918
15	Rojo Regional	1.766	2.255	1.657	2.948	2.920	2.309
16	Ver-2-Cd. Guzmán	1.596	2.112	2.697	3.702	4.456	2.913
17	Improved Spanish	2.275	2.710	2.085	3.464	4.429	2.993
18	Manfredi- 108	1.868	1.752	2.139	2.819	4.212	2.558
19	Morelos- 1	1.698	1.698	3.043	3.424	4.348	2.842
20	Tautui- 76	2.389	3.097	1.895	3.573	4.402	3.071
21	Tennesse Red	1.290	1.915	1.711	2.486	3.750	2.230
22	Tuxpan- 2	2.151	2.778	2.146	4.008	4.402	3.097

2.118

-0.678

2.231

-0.565

4.232

+1.436

2.796

3.514

+0.718

de adaptación, un número moderado de ambientes, combinando años y localidades.

4.2.1 COMPORTAMIENTOS VARIETALES

El análisis de varianza y sus pruebas de significancia, siguie \underline{n} do la metodología sugerida por Eberhart y Russell (1966), es prese \underline{n} tado en el Cuadro 20.

Como se puede observar, al detectar diferencia significativa (5 %), entre medias varietales, se rechaza la hipótesis nula:

Ho:
$$\mu_1 = \mu_2 = \dots = \mu_{22}$$

Las variedades sobresalientes en rendimiento, que difieren estadísticamente del testigo regional (Ixtaltepec- 1), al nivel del 5 %, son mostradas en el Cuadro 21, Nótese que en este grupo queda una del tipo Virginia: R-F-123 y dos del tipo Español: Tuxpan- 2 y Tautui- 76. Coincidiendo además estos resultados, con los observados en el resumen de los análisis individuales (Cuadro 17.).

4.2.2 INTERACCION GENOTIPO-MEDIO AMBIENTE

Haciendo referencia nuevamente al Cuadro 20, puede verse que la hipótesis nula:

Ho :
$$\beta_1 = \beta_2 = \dots = \beta_{22}$$

no se rechaza al nivel de significancia del 5 %.

CUADRO 20. RESULTADOS DEL ANALISIS DE VARIANZA

FUENTE DE VARIACION	GRADOS DE LIBERTAD	SUMA DE -	CUADRADO	Fc	Ft	:
		CUADRADOS	MEDIO	c	0.05	0.01
Total	109	110.64185				
Variedades (V)	21	6.03101	0.28719	1.96233*	1.75	2.20
Medios Ambientes (E)	88{ <mark>4</mark> 84					
V x E	¹ 84					
Medios Ambientes	1	92.04085				
(E Lineal)						
V x E (Lineal)	21	2.91934	0.13902	0.94988	1.75	2.20
Desviación Conjunta	66	9.65924	0.14635			
Variedad 1	3	0.23015	0.07672	0.26698	2.60	3.78
" 2	3	0.59087	0.19696	0.68543	"	•
" 3	3	1.11797	0.37266	1.29688	. "	
. • 4	3	0.07373	0.02458	0.08553	**	11
" 5	3	0.03078	0.01026	0.03570	11 '	n .
" 6	3 ·	0.20792	0.06931	0.24119	п	iı
" · 7	. 3	0.03705	0.01235	0.04298	11	10
" 8	· 3	0.09939	0.03313	0.11530	п	n
" 9	3 .	0.17147	0.05716	0.19891	р	19
" 10	-3	0.05591	0.01864	0.06486	•	п
" 11	3	1.42420	0.47473	1.65211	-	ri .
" 12	3	0.33851	0.11284	0.39268	**	n
" 13	3	0.04123	0.01374	0.04783		U
* 14	3	1.60797	0.53599	1.86529	н -	п
" 15	3	0.30998	0.10333	0.35959	n·	#
" 16	3	0.26810	0.08937	0.31100	17	11
" 1 7	3	0.32724	0.10908	0.37961	n	11
" <u>1</u> 8	3	0.33148	0.11049	0.38452	•	11
" <u>19</u>	3	0.87996	0.29332	1.02078	n '	* #
" 20	3	0.87792	0.29264	1.01841	n	# .
" 21	3	0.30531	0.10177	0.35417	Ħ	11
" <u>22</u>	3	0.33209	0.11070	0.58523	н ,	
Error Conjunto	315		0.28735	•		

CUADRO 21, RENDIMIENTO MEDIO Y PARAMETROS DE ESTABILIDAD DE 22 VARIEDADES DE CACAHUATE.

No.de - variedad	Variedades	Rendimiento me dio en Ton/ha.	Coeficiente de regresión (bi)	Desviaciones de regresión (S ² di)	Tipo 6 Grupo
11	R-F-123	3.172 a	1.05178	0.18738	Virginia
22	Tuxpan- 2	3.097 a	0.99025	-0.17665	Español
20	Tautui- 76	3.071 a [.]	0.84607	0.00529	Español
5	Guerrero- 4	2.994 ab	1.29896	-0.27709	Virginia
17	Improved Spanish	2.993 ab	0.89847	-0.17827	Español
4	Guerrero- 1	2.962 ab	1.29897	-0.26277	Virginia
14	R-F-214	2.918 ab	1.11635	0.24864	Virginia
16	Ver2-Cd. Guzmán	2.913 ab	1.11044	-0.19798	Virginia
10	N-C-4-X	2.877 ab	1.19128	-0.26871	Virginia
13	R-F-211-N-C-2	2.866 ab	0.80520	-0.27361	Virginia
8	Los Médanos	2.846 ab	0.85759	-0.25422	Virginia
19	Morelos- 1	2.842 ab	1.02381	0.00597	Español
12	R-F-132	2.829 ab	0.87992	-0.17451	Virginia
7	Jumbo- 2	2.778 ab	0.97854	-0.27500	Virginia
ġ	Morelos- 3	2.769 ab	1.19216	-0.23019	Virginia
1 .	Blanco Criollo Aguas				
	calientes	2.684 b	1.17213	-0.21063	Virginia
. 3	Georgia 119-20	2.666 b	1.03636	0.08531	Virginia
6	Ixtaltepec- 1	2.618 b	1.08012	-0.21804	Virginia
18	Manfredi- 108	2.558	0.94980	-0.17686	Español
2 ·	Delicias- 1	2.534	0.79776	-0.09039	Virginia
15	Rojo Regional	2.309	0.53438	-0.18402	Virginia
21	Tennesse Red	2.230	0.89126	-0.18558	Español

Para interpretar lo anterior, es conveniente considerar, que las variedades con que se experimentó son mejoradas, y en su obten ción, probablemente se tomó en cuenta su capacidad de adaptación a diversos ambientes, que puede ser muy amplia según señalan Gillier y Silvestre (1970), explicándose con ésto, la ausencia del efecto de la interacción genotipo-ambiente.

Como se ha dicho anteriormente, las investigaciones en cacahua te se han orientado, hacia la búsqueda de variedades que tengan mejor adaptación, a las áreas potencialmente cultivables. Para este caso en particular, desde el punto de vista de Moll y Stuber (1974), fué benéfico no encontrar interacción genotipo-ambiente, ya que permitió comprobar que las variedades se comportan bien en los distintos ambientes en que se evaluaron. Por ésta razón, no fue necesario estratificar el área de estudio en subregiones, como sugieren Carballo y Márquez (1970), y Castellón (1976). Aplicando los criterios expuestos por Plaisted y Peterson (1959), y Márquez (1974), todas las variedades se pueden considerar como deseables.

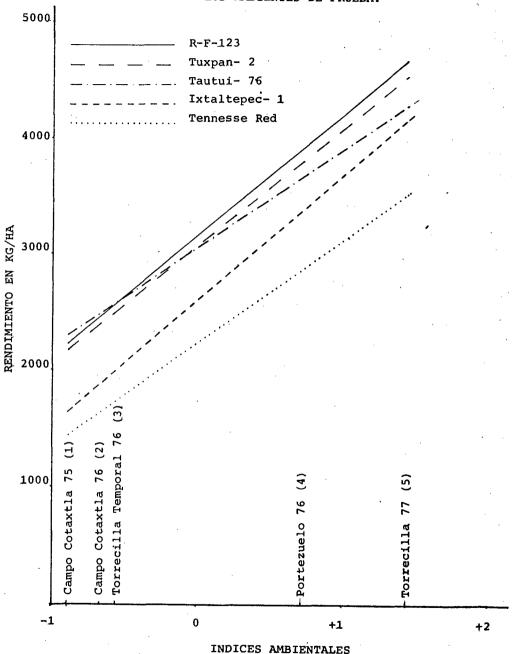
4.2.3 PARAMETROS DE ESTABILIDAD

Los parametros de estabilidad estimados para cada una de las variedades, se muestran en el Cuadro 21.

Con fines de interpretación, fué necesario considerar a los $n\underline{u}$ meros negativos, como cifras muy cercanas a cero y de signo positivo.

Los valores encontrados de bi y S^2 di, para i = 1,2,..... 22;

corresponden a variedades estables, según la clasificación propues ta por Carballo (1970), misma que aparece en el Cuadro 1.


Las variedades R-F-123, Tuxpan- 2 y Tautui- 76, son las más deseables si se toman como base los criterios expuestos por Finlay y Wilkinson (1963), y Bucio (1966), ya que además de ser altamente productivas, no interaccionan con los ambientes de grueba. Por su buena estabilidad demustran capacidad de respuesta a las mejoras ambientales, como reportan Márquez (1973), y Mártinez (1977).

De estos resultados se puede inferir, que la segunda hipótesis, en donde se postula que la comparación con el testigo no es suficiente para seleccionar a las mejores variedades, es verdadera, ya que es necesario además evaluar la consistencia y los efectos amor tiguadores de cada una de ellas, según sugieren Allard y Bradshaw (1964), Chávez (1977) y Juárez (1977).

La Figura 2, muestra las tendencias de respuesta de las variedades que difieren estadísticamente del testigo regional; se incluye a la variedad Tennesse Red, que fue la de menor rendimiento medio.

Finalmente se puede hacer la observación de que, los resultados obtenidos no concordaron con los criterios expuestos por Rowe y Andrew (1964), y Mazzani (1963), por no haberse presentado diferencias en estabilidad.

FIG. 2. ESTIMACION DE LA RESPUESTA DE CINCO VARIEDADES, A
LOS AMBIENTES DE PRUEBA.

5. CONCLUSIONES

De la discusión de los resultados experimentales hecha con an terioridad, se pueden obtener las siguientes conclusiones:

- 1. Las variedades selectas por su alto rendimiento, y además estables fueron: R-F-123 del tipo Virginia con un rendimiento medio en los cinco ambientes de prueba de 3.172 ton/ha y las del tipo Español, Tuxpan- 2 y Tautui- 76 con rendimientos medios de 3.097 y 3,071 ton/ha, respectivamente. Por las características que presentaron éstas variedades, pueden ser catalogadas como deseables.
- 2. Para las condiciones particulares del presente estudio, se considera que cinco ambientes de prueba, los cuales involucran a tres localidades y tres años, en cinco posibilidades diferentes, fue suficiente para evaluar al grupo de 22 variedades.
- 3. Usar los parámetros de estabilidad y el promedio del testigo regional, permitió probar más eficientemente la superioridad estadística del rendimiento, ya que se tuvo una mayor severidad en
 la selección

6. BIBLIOGRAFIA

- Allard, R.W. and Bradshaw, A.D. 1964. Implications of genotype-environmental interactions in applied plant breeding. Crop. Sci. 4: 503.508.
- Bucio, A.L. 1966. Environmental and genotype-environmental components of variability. I. Inbred lines. II. Heterozygotes. Heredity. 21: 387-405.
- Carballo, C.A. 1970. Comparación de variedades de maíz de El Bajío y de La Mesa Central por su rendimiento y estabilidad. (Tesis M.C.). Chapingo, Méx., ENA. Colegio de Postgraduados.
- y Márquez, S.F. 1970. Comparación de variedades de maíz de El Bajío y La Mesa Central por su rendimiento y estabilidad. Agrociencia. 5: 129-146.
- Castellón, O.J.J. 1976. Uso de parámetros de estabilidad como criterio de selección de maíces cristalinos de la Sierra de Chihuahua. (Tesis profesional). Guadalajara, México. Escuela de Agronomía Universidad de Guadalajara.
- Cotaxtla, Veracruz, México. Area de influencia del Campo Agrícola Experimental "Cotaxtla". 1977. Guía para la asistencia técnica a grícola. Secretaria de Agricultura y Recursos Hidráulicos, Instituto Nacional de Investigaciones Agrícolas. p. 46-48.

- Chavez, Ch.J. 1977. Estabilidad del rendimiento de grano de avena (Avena sativa, L.) en diferentes agrupamientos ambientales. (Tesis M.C.). Chapingo, Méx. ENA. Colegio de Postgraduados.
- Dirección General de Agricultura en Coordinación con SAG. 1976.

 Producción Agrícola del Estado. Ciclo 1974-75. Xalapa, Ver.

 México. 71. p.
- Eberhart, S.A. and Russell, W.A. 1966. Stability parameters for comparing varieties. Crop. Sci. 6: 36-40.
- Finlay, K.W. and Wilkinson, G.N. 1963. The analysis of adaptation in a plant breeding programme. Aust. Jour. Agr. Res. 14: 742-754.
- García, E. 1973. Modificaciones al sistema de clasificación climática de Köppen. 2ª ed. México. Dirección General de Publicaciones. 246 p.
- Gillier, P. y Silvestre, P. 1970. Genética y Mejora. En: El cacahuate o maní. Barcelona, Ed. Blume. P. 65-82.
- Gómez, M.N. 1977. Estabilidad del rendimiento y delimitación de áreas del cultivo del sorgo para grano de México. (Tesis M.C.). Chapingo, Méx., ENA. Colegio de Postgraduados.
- Información Estadística y Agropecuaria 1971. Cacahuate; datos preliminares. México. p. 83.

- Juárez, E.R. 1977. Interacción genotipo-medio ambiente en la selección y recomendación de híbridos de sorgo para grano. (Tesis M.C.). Chapingo, Méx., ENA. Colegio de Postgraduados.
- Marquez, S.F. 1973. Relationship betwen genotype-environmental interaction and stability parameters. Crop.Sci. 13: 577-579.
- ______1974. El problema de la interacción genético ambiental en genotecnia vegetal. Chapingo, Méx., Ed. Patena. p. 31.
- Martinez, S.J.J. 1977. Correlaciones y parámetros de estabilidad en rendimiento y calidad de trigo. (Tesis M.C.). Chapingo, Méx., ENA. Colegio de Postgraduados.
- Mazzani, B. 1963. Cacahuate. En: Plantas Oleaginosas. Barcelona, Salvat Editores, S.A. p. 264-265.
- Miller, P.A. Robinson, H.F. and Pope, O.A. 1962. Cotton variety testing: additional information on variety x environment interactions. Crop. Sci. 2: 349-352.
- Moll, R.H. and Stuber, C.W. 1974. Quantitative genetics empirical results relevant to plant breeding. IV. Genotype-environmental interactions. Advances in Agronomy. 26: 287-295.
- Plaisted, R.L. and Peterson, L.C. 1959. A technique for evaluating the ability of selections to yield consistently in different locations or seasons. American Potato Journal. 36: 381-385.

- Rowe, P.R. and Andrew, R.H. 1964. Phenotypic stability for a systematic series of corn genotypes. Crop. Sci. 4: 563-567.
- Steel, R.G.D. and Torrie, J.H. 1960. Duncan's new multiple range test. In: Principles and Procedures of statistics. New York, Mc Graw-Hill. p. 107-109.